5 research outputs found

    Biclustering analysis of transcriptome big data identifies condition-specific microRNA targets

    Get PDF
    We present a novel approach to identify human microRNA (miRNA) regulatory modules (mRNA targets and relevant cell conditions) by biclustering a large collection of mRNA fold-change data for sequence-specific targets. Bicluster targets were assessed using validated messenger RNA (mRNA) targets and exhibited on an average 17.0% (median 19.4%) improved gain in certainty (sensitivity + specificity). The net gain was further increased up to 32.0% (median 33.4%) by incorporating functional networks of targets. We analyzed cancer-specific biclusters and found that the PI3K/Akt signaling pathway is strongly enriched with targets of a few miRNAs in breast cancer and diffuse large B-cell lymphoma. Indeed, five independent prognostic miRNAs were identified, and repression of bicluster targets and pathway activity by miR-29 was experimentally validated. In total, 29 898 biclusters for 459 human miRNAs were collected in the BiMIR database where biclusters are searchable for miRNAs, tissues, diseases, keywords and target genes

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore