553 research outputs found
Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders
Funding: This work was funded by a Marie Curie Career Integration Grant and by a Max Planck Research Group Grant both awarded to SCV. The work of the Newbury lab is funded by the Medical Research Council (G1000569/1 and MR/J003719/1). XSC, AG, CF and SEF were supported by the Max Planck Society. The UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol provided core support for ALSPAC. The work of the Wellcome Trust Centre in Oxford is supported by the Wellcome Trust (090532/Z/09/Z). JH was supported by a scholarship from the Agency for Science, Technology, and Research, Singapore. The work of SDS is supported by the grant HD027802 from NIH.Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3'UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders. In the future, integration of such regulatory variation with protein coding changes will be essential for uncovering the genetic causes of complex neurological disorders and the fundamental mechanisms underlying health and disease.Publisher PDFPeer reviewe
Relaxation Processes in Clouds of Trapped Bosons above the Bose-Einstein Condensation Temperature
We present a unified account of damping of low-lying collective modes and of
relaxation of temperature anisotropies in a trapped Bose gas in the
collisionless regime. By means of variational techniques, we show that the
relaxation times for the two situations are closely related to the simplest
variational estimate of the viscous relaxation time. We derive rather precise
theoretical expressions for the characteristic relaxation times, and compare
our results with experiment.Comment: 4 pages, revte
Genome-wide screening for DNA variants associated with reading and language traits
This research was funded by: Max Planck Society, the University of St Andrews - Grant Number: 018696, US National Institutes of Health - Grant Number: P50 HD027802, Wellcome Trust - Grant Number: 090532/Z/09/Z, and Medical Research Council Hub Grant Grant Number: G0900747 91070Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a genome‐wide association scan (GWAS) meta‐analysis using three richly characterized datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading‐ and language‐related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected P ≈ 10–7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on‐going international efforts to identify genes contributing to reading and language skills.Publisher PDFPeer reviewe
High-resolution microwave frequency dissemination on an 86-km urban optical link
We report the first demonstration of a long-distance ultra stable frequency
dissemination in the microwave range. A 9.15 GHz signal is transferred through
a 86-km urban optical link with a fractional frequency stability of 1.3x10-15
at 1 s integration time and below 10-18 at one day. The optical link phase
noise compensation is performed with a round-trip method. To achieve such a
result we implement light polarisation scrambling and dispersion compensation.
This link outperforms all the previous radiofrequency links and compares well
with recently demonstrated full optical links.Comment: 11 pages, 5 figure
Long-distance frequency transfer over an urban fiber link using optical phase stabilization
We transferred the frequency of an ultra-stable laser over 86 km of urban
fiber. The link is composed of two cascaded 43-km fibers connecting two
laboratories, LNE-SYRTE and LPL in Paris area. In an effort to realistically
demonstrate a link of 172 km without using spooled fiber extensions, we
implemented a recirculation loop to double the length of the urban fiber link.
The link is fed with a 1542-nm cavity stabilized fiber laser having a sub-Hz
linewidth. The fiber-induced phase noise is measured and cancelled with an all
fiber-based interferometer using commercial off the shelf pigtailed
telecommunication components. The compensated link shows an Allan deviation of
a few 10-16 at one second and a few 10-19 at 10,000 seconds
Spin-axis relaxation in spin-exchange collisions of alkali atoms
We present calculations of spin-relaxation rates of alkali-metal atoms due to
the spin-axis interaction acting in binary collisions between the atoms. We
show that for the high-temperature conditions of interest here, the spin
relaxation rates calculated with classical-path trajectories are nearly the
same as those calculated with the distorted-wave Born approximation. We compare
these calculations to recent experiments that used magnetic decoupling to
isolate spin relaxation due to binary collisions from that due to the formation
of triplet van-der-Waals molecules. The values of the spin-axis coupling
coefficients deduced from measurements of binary collision rates are consistent
with those deduced from molecular decoupling experiments. All the experimental
data is consistent with a simple and physically plausible scaling law for the
spin-axis coupling coefficients.Comment: text+1 figur
Condensation and interaction range in harmonic boson traps: a variational approach
For a gas of N bosons interacting through a two-body Morse potential a
variational bound of the free energy of a confined system is obtained. The
calculation method is based on the Feynman-Kac functional projected on the
symmetric representation. Within the harmonic approximation a variational
estimate of the effect of the interaction range on the existence of
many-particle bound states, and on the N-T phase diagram is obtained.Comment: 14 pages+4 figures, submitted to phys.rev.
Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment
Peer reviewedPublisher PD
Feshbach resonances in rubidium 87: Precision measurement and analysis
More than 40 Feshbach resonances in rubidium 87 are observed in the magnetic
field range between 0.5 and 1260 G for various spin mixtures in the lower
hyperfine ground state. The Feshbach resonances are observed by monitoring the
atom loss, and their positions are determined with an accuracy of 30 mG. In a
detailed analysis, the resonances are identified and an improved set of model
parameters for the rubidium interatomic potential is deduced. The elastic width
of the broadest resonance at 1007 G is predicted to be significantly larger
than the magnetic field resolution of the apparatus. This demonstrates the
potential for applications based on tuning the scattering length.Comment: figure 2 corrected; minor changes in the tex
- …