120 research outputs found

    Observable frequency shifts via spin-rotation coupling

    Get PDF
    The phase perturbation arising from spin-rotation coupling is developed as a natural extension of the celebrated Sagnac effect. Experimental evidence in support of this phase shift, however, has yet to be realized due to the exceptional sensitivity required. We draw attention to the relevance of a series of experiments establishing that circularly polarized light, upon passing through a rotating half-wave plate, is changed in frequency by twice the rotation rate. These experiments may be interpreted as demonstrating the role of spin-rotation coupling in inducing this frequency shift, thus providing direct empirical verification of the coupling of the photon helicity to rotation. A neutron interferometry experiment is proposed which would be sensitive to an analogous frequency shift for fermions. In this arrangement, polarized neutrons enter an interferometer containing two spin flippers, one of which is rotating while the other is held stationary. An observable beating in the transmitted neutron beam intensity is predicted.Comment: LaTeX, 15 pages with 4 PostScript figures, submitted to Phys. Lett.

    Observable frequency shifts via spin-rotation coupling

    Get PDF
    DOI: 10.1016/S0375-9601(98)00729-4The phase perturbation arising from spin-rotation coupling is developed as a natural extension of the celebrated Sagnac effect. Experimental evidence in support of this phase shift, however, has yet to be realized due to the exceptional sensitivity required. We draw attention to the relevance of a series of experiments establishing that circularly polarized light, upon passing through a rotating half-wave plate, is changed in frequency by twice the rotation rate. These experiments may be interpreted as demonstrating the role of spin-rotation coupling in inducing this frequency shift, thus providing direct empirical verification of the coupling of the photon helicity to rotation. A neutron interferometry experiment is proposed which would be sensitive to an analogous frequency shift for fermions. In this arrangement, polarized neutrons enter an interferometer containing two spin flippers, one of which is rotating while the other is held stationary. An observable beating in the transmitted neutron beam intensity is predicted

    Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches

    Get PDF
    Time-resolved structural studies of proteins have undergone several significant developments during the last decade. Recent developments using time-resolved X-ray methods, such as time-resolved Laue diffraction, low-temperature intermediate trapping, time-resolved wide-angle X-ray scattering and time-resolved X-ray absorption spectroscopy, are reviewed

    Three-dimensional structure determination from a single view

    Full text link
    The ability to determine the structure of matter in three dimensions has profoundly advanced our understanding of nature. Traditionally, the most widely used schemes for 3D structure determination of an object are implemented by acquiring multiple measurements over various sample orientations, as in the case of crystallography and tomography (1,2), or by scanning a series of thin sections through the sample, as in confocal microscopy (3). Here we present a 3D imaging modality, termed ankylography (derived from the Greek words ankylos meaning 'curved' and graphein meaning 'writing'), which enables complete 3D structure determination from a single exposure using a monochromatic incident beam. We demonstrate that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirm the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 Angstrom resolution and a single poliovirus at 2 - 3 nm resolution from 2D spherical diffraction patterns alone. Using diffraction data from a soft X-ray laser, we demonstrate that ankylography is experimentally feasible by obtaining a 3D image of a test object from a single 2D diffraction pattern. This approach of obtaining complete 3D structure information from a single view is anticipated to find broad applications in the physical and life sciences. As X-ray free electron lasers (X-FEL) and other coherent X-ray sources are under rapid development worldwide, ankylography potentially opens a door to determining the 3D structure of a biological specimen in a single pulse and allowing for time-resolved 3D structure determination of disordered materials.Comment: 30 page

    Ultrafast structural changes direct the first molecular events of vision

    Get PDF
    視覚に関わるタンパク質の超高速分子動画 --薄暗いところで光を感じる仕組み--. 京都大学プレスリリース. 2023-03-23.Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs). A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation

    Nanosecond pump-probe device for time-resolved serial femtosecond crystallography developed at SACLA

    Get PDF
    X-ray free-electron lasers (XFELs) have opened new opportunities for timeresolved X-ray crystallography. Here a nanosecond optical-pump XFEL-probe device developed for time-resolved serial femtosecond crystallography (TRSFX) studies of photo-induced reactions in proteins at the SPring-8 Angstrom Compact free-electron LAser (SACLA) is reported. The optical-fiber-based system is a good choice for a quick setup in a limited beam time and allows pump illumination from two directions to achieve high excitation efficiency of protein microcrystals. Two types of injectors are used: one for extruding highly viscous samples such as lipidic cubic phase (LCP) and the other for pulsed liquid droplets. Under standard sample flow conditions from the viscous-sample injector, delay times from nanoseconds to tens of milliseconds are accessible, typical time scales required to study large protein conformational changes. A first demonstration of a TR-SFX experiment on bacteriorhodopsin in bicelle using a setup with a droplet-type injector is also presented.112Ysciescopu

    Acceleration and optical interferometry

    Get PDF
    The influence of acceleration on a number of physical systems is examined. We present a full relativistic treatment of a simple harmonic oscillator with relativistic velocities. The line element for Schwarzschild geometry is expanded in a set of Cartesian coordinates and is shown to be locally equivalent (neglecting curvature) to the line element of a linearly accelerating frame of reference. We consider the rate of a linearly accelerating quantum mechanical clock and the measurement of frequency by non-inertial observers, requiring this measurement to be of finite duration. These analyses demonstrate the standard measurement hypothesis for accelerating observers only approximates the physical behaviour of these systems. We derive the output of an optical ring interferometer in a variety of experimental contexts. A full relativistic reanalysis of the modified Laub drag experiment of Sanders and Ezekiel is performed, correcting a number of errors in their work and giving an overall discrepancy between experiment and theory of 1300 ppm. We examine the behaviour of a ring interferometer containing an accelerating glass sample. Our analysis predicts sideband structure will arise when a glass sample is oscillated along one arm of a Mach-Zehnder interferometer and the resulting output Fourier analysed. We also predict a resonant cavity containing a linearly accelerating glass sample will display optical ringing. A rigorous analysis of a ring interferometer with angular acceleration is presented. This predicts a resonant cavity with angular acceleration will also display optical ringing and demonstrates the beat frequency in a ring laser with angular acceleration is the instantaneous Sagnac beat frequency. Finally, we analyse the optical output of a rotating ring laser with one mirror oscillating, predicting sideband structure in spectra obtained from Fourier analysis of the beat between the opposite beams, and the beat between adjacent modes when the laser has multimode operation
    corecore