1,991 research outputs found

    What makes you not a Sikh? : a preliminary mapping of values

    Get PDF
    This study sets out to establish which Sikh values contrasted with or were shared by non-Sikh adolescents. A survey of attitude toward a variety of Sikh values was fielded in a sample of 364 non-Sikh schoolchildren aged between 13 and 15 in London. Values where attitudes were least positive concerned Sikh duties/code of conduct, festivals, rituals, prayer Gurdwara attendance, listening to scripture recitation, the amrit initiation. Sikh values empathized with by non-Sikhs concerned family pride, charity, easy access to ordination and Gurdwaras, maintaining the five Ks, seeing God in all things, abstaining from meat and alcohol and belief in the stories of Guru Nanak. Further significant differences of attitude toward Sikhism were found in comparisons by sex, age and religious affiliation. Findings are applied to teaching Sikhism to pupils of no faith adherence. The study recommends the extension of values mapping to specifically Sikh populations

    A diverse diapsid tooth assemblage from the Early Triassic (Driefontein locality, South Africa) records the recovery of diapsids following the end-Permian mass extinction

    Get PDF
    Mass extinctions change the trajectory of evolution and restructure ecosystems. The largest mass extinction, the end-Permian, is a particularly interesting case due to the hypothesized delay in the recovery of global ecosystems, where total trophic level recovery is not thought to have occurred until 5–9 million years after the extinction event. Diapsids, especially archosauromorphs, play an important role in this recovery, filling niches left vacant by therapsids and anapsids. However, the nature of lineage and ecological diversification of diapsids is obscured by the limited number of continuous, well-dated stratigraphic sections at the Permian-Triassic boundary and continuing through the first half of the Triassic. The Karoo Basin of South Africa is one such record, and particularly the late Early Triassic (Olenekian) Driefontein locality fills this gap in the diapsid fossil record. We collected a total of 102 teeth of which 81 are identified as diapsids and the remaining 21 as identified as temnospondyls. From the sample, seven distinct tooth morphotypes of diapsids are recognized, six of which are new to the locality. We used a combination of linear measurements, 3D geomorphometrics, and nMDS ordination to compare these morphotypes and made inferences about their possible diets. Although the morphotypes are readily differentiated in nMDS, the overall morphological disparity is low, and we infer five morphotypes are faunivorous with the other two potentially omnivorous or piscivorous based on their morphological similarities with dentitions from extant diapsids, demonstrating an unsampled taxonomic and ecological diversity of diapsids in the Early Triassic based on teeth. Although ecological specialization at Driefontein may be low, it records a diversity of diapsid taxa, specifically of archosauromorph lineages

    LCF Life of NiCr-Y Coated Disk Alloys After Shot Peening, Oxidation and Hot Corrosion

    Get PDF
    In a prior companion study (Ref. 1), three different Ni-Cr coating compositions (29, 35.5, 45 wt% Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The low cycle fatigue (LCF) life of each coating was determined at 760 C and was less than that of the uncoated specimens. In this followon effort, shot peening was examined as a means to improve the as-deposited coating morphology as well as impart a residual compressive stress in the near-surface region. After evaluating the effect of the shot peening on the LCF life, the effectiveness of the shot-peened coating in protecting the disk alloy from oxidation and hot corrosion attack was evaluated. This evaluation was accomplished by exposing coated and shot-peened specimens to 500 h of oxidation followed by 50 h of hot corrosion, both at 760 C in air. These exposed specimens were then tested in fatigue and compared to similarly treated and exposed uncoated specimens. For all cases, shot peening improved the LCF life of the coated specimens. More specifically, the highest Cr coating showed the best LCF life of the coated specimens after shot peening, as well as after the environmental exposures. Characterization of the coatings after shot peening, oxidation, hot corrosion and LCF testing is presented and discussed

    CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM)

    Get PDF
    The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM) technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W) used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems). Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites). C-scan traces showed that all composites, regardless of methods of curing, had minimal defects

    Modelling glacial lake outburst flood impacts in the Bolivian Andes

    Get PDF
    The Bolivian Andes have experienced sustained and widespread glacier mass loss in recent decades. Glacier recession has been accompanied by the development of proglacial lakes, which pose a glacial lake outburst flood (GLOF) risk to downstream communities and infrastructure. Previous research has identified three potentially dangerous glacial lakes in the Bolivian Andes, but no attempt has yet been made to model GLOF inundation downstream from these lakes. We generated 2-m resolution DEMs from stereo and tri-stereo SPOT 6/7 satellite images to drive a hydrodynamic model of GLOF flow (HEC-RAS 5.0.3). The model was tested against field observations of a 2009 GLOF from Keara, in the Cordillera Apolobamba, and was shown to reproduce realistic flood depths and inundation. The model was then used to model GLOFs from Pelechuco lake (Cordillera Apolobamba) and Laguna Arkhata and Laguna Glaciar (Cordillera Real). In total, six villages could be affected by GLOFs if all three lakes burst. For sensitivity analysis, we ran the model for three scenarios (pessimistic, intermediate, optimistic), which give a range of ~ 1100 to ~ 2200 people affected by flooding; between ~ 800 and ~ 2100 people could be exposed to floods with a flow depth ≥ 2 m, which could be life threatening and cause a significant damage to infrastructure. We suggest that Laguna Arkhata and Pelechuco lake represent the greatest risk due to the higher numbers of people who live in the potential flow paths, and hence, these two glacial lakes should be a priority for risk managers

    Underground mine scheduling under uncertainty

    Get PDF
    17 USC 105 interim-entered record; under review.The article of record as published may be found at http://dx.doi.org/10.1016/j.ejor.2021.01.011Underground mine schedules seek to determine start dates for activities related to the extraction of ore, often with an objective of maximizing net present value; constraints enforce geotechnical precedence between activities, and restrict resource consumption on a per-time-period basis, e.g., development footage and extracted tons. Strategic schedules address these start dates at a coarse level, whereas tactical schedules must account for the day-to-day variability of underground mine operations, such as unanticipated equipment breakdowns and ground conditions, both of which might slow production. At the time of this writing, the underground mine scheduling literature is dominated by a deterministic treatment of the problem, usually modeled as a Resource Constrained Project Scheduling Problem (RCPSP), which precludes mine operators from reacting to unforeseen circumstances. Therefore, we propose a stochastic integer programming framework that: (i) characterizes uncertainty in duration and economic value for each underground mining activity; (ii) formulates a new stochastic variant of the RCPSP; (iii) suggests an optimization-based heuristic; and, (iv) produces implementable, tactical schedules in a practical amount of time and provides corresponding managerial insights.National Institute of Occupational Safety and HealthNational Agency for Research and Development (ANID

    Complex examination of the Upper Paleozoic siliciclastic rocks from southern Transdanubia, SW Hungary—Mineralogical, petrographic, and geochemical study

    Get PDF
    A vertical section of Upper Paleozoic sandstones from southern Transdanubia (Mecsek-Villány area, Tisza mega-unit, Hungary) has been analyzed for major and trace elements, including rare earth elements (REEs). In addition, the clay mineralogy of the sandstone samples and the petrography and geochemistry of gneiss and granitoid clasts extracted from the associated conglomerates have been determined. Geochemistry of the sandstone samples analyzed in this study shows that these rocks were predominantly derived from a felsic continental source; nevertheless, compositions vary systematically up-section. The Pennsylvanian (Upper Carboniferous) Téseny Formation has higher SiO(2) and lower Na(2)O, CaO, Sr, high field strength element (HFSE), and ΣREE contents relative to the Permian strata. Its high K(2)O and Rb contents together with the presence of abundant illite-sericite suggest a potassium metasomatism in this formation. Clay mineralogy and large ion lithophile element (LILE) contents of the Lower Permian Korpád Formation vary spatially and are interpreted as local variations in composition of the source region and postdepositional conditions. Zr and Hf abundances and REE patterns, however, show that this formation was derived from mature upper continental crust. The Upper Permian Cserdi Formation has higher TiO(2), Th, U, Y, Cr, and heavy (H) REE contents, and higher Cr/Th and Cr/Zr ratios relative to the underlying formations. These trends can be explained by a sedimentary system dominated by highly weathered detritus derived from combined recycled-orogen, basement-uplift, and volcanic-arc provenance in the Téseny Formation, with an increased proportion of less weathered detritus derived from combined volcanic and basement-uplift provenances in the Permian formations. Characteristics of the Cserdi unit may reflect relatively proximal derivation from a felsic volcanic source

    A new short-faced archosauriform from the Upper Triassic Placerias/Downs’ quarry complex, Arizona, USA, expands the morphological diversity of the Triassic archosauriform radiation

    Get PDF
    The Placerias/Downs’ Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3–4 anterior, a larger caniniform, and 1–3 “postcanine” alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus. This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa
    corecore