research

LCF Life of NiCr-Y Coated Disk Alloys After Shot Peening, Oxidation and Hot Corrosion

Abstract

In a prior companion study (Ref. 1), three different Ni-Cr coating compositions (29, 35.5, 45 wt% Cr) were applied at two thicknesses by Plasma Enhanced Magnetron Sputtering (PEMS) to two similar Ni-based disk alloys. One coating also received a thin ZrO2 overcoat. The low cycle fatigue (LCF) life of each coating was determined at 760 C and was less than that of the uncoated specimens. In this followon effort, shot peening was examined as a means to improve the as-deposited coating morphology as well as impart a residual compressive stress in the near-surface region. After evaluating the effect of the shot peening on the LCF life, the effectiveness of the shot-peened coating in protecting the disk alloy from oxidation and hot corrosion attack was evaluated. This evaluation was accomplished by exposing coated and shot-peened specimens to 500 h of oxidation followed by 50 h of hot corrosion, both at 760 C in air. These exposed specimens were then tested in fatigue and compared to similarly treated and exposed uncoated specimens. For all cases, shot peening improved the LCF life of the coated specimens. More specifically, the highest Cr coating showed the best LCF life of the coated specimens after shot peening, as well as after the environmental exposures. Characterization of the coatings after shot peening, oxidation, hot corrosion and LCF testing is presented and discussed

    Similar works