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a b s t r a c t 

Underground mine schedules seek to determine start dates for activities related to the extraction of ore, 

often with an objective of maximizing net present value; constraints enforce geotechnical precedence be- 

tween activities, and restrict resource consumption on a per-time-period basis, e.g., development footage 

and extracted tons. Strategic schedules address these start dates at a coarse level, whereas tactical sched- 

ules must account for the day-to-day variability of underground mine operations, such as unanticipated 

equipment breakdowns and ground conditions, both of which might slow production. At the time of 

this writing, the underground mine scheduling literature is dominated by a deterministic treatment of 

the problem, usually modeled as a Resource Constrained Project Scheduling Problem (RCPSP), which pre- 

cludes mine operators from reacting to unforeseen circumstances. Therefore, we propose a stochastic 

integer programming framework that: (i) characterizes uncertainty in duration and economic value for 

each underground mining activity; (ii) formulates a new stochastic variant of the RCPSP; (iii) suggests an 

optimization-based heuristic; and, (iv) produces implementable, tactical schedules in a practical amount 

of time and provides corresponding managerial insights. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Underground mining seeks to extract ore from deep un- 

erground through constructed passageways, or tunnels. An 

nderground mine design defines the infrastructure necessary to 

fficiently gain access to this ore, and a production schedule 

nforms the timing of operational decisions, or the execution of 

ctivities , given a design. These activities might consist of the ex- 

raction of three-dimensional, notional blocks in an open pit mine, 

r the mining, and subsequent backfilling, of a stope in an under- 

round mine. Common objectives include maximizing net present 

alue or minimizing deviations from contracts. Constraints: (i) 

nforce physical precedence between activities, e.g., development 

n an area before extraction; and, (ii) restrict resource consump- 

ion on a per-time-period basis, e.g., development footage and 

xtracted tons. Brickey (2015) presents a generalized underground 

ine scheduling model as a resource-constrained project scheduling 
∗ Corresponding author. 
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roblem ( Rcpsp ) in which: (i) the duration of each activity; (ii) lag, 

r required delay between activities; (iii) resources consumed by 

ach activity; and, (iv) economic value of completing each activ- 

ty are known. Scheduling synchronizes allocation of labor and 

echanical resources within the production process; in practice, 

chedules often fall short of providing an achievable plan because 

f uncertainty associated with the parameters; rather, mine plan- 

ers must make real-time adjustments as better estimates of the 

ata are realized. To mitigate the lack of clairvoyance using a more 

ailored approach than the ad hoc addition of incorporating slack 

nto the schedule, we propose to include uncertainty for tactical 

ecision making. 

Production scheduling is used by mine management to make 

arge financial decisions (e.g., the size and quantity of equipment 

o purchase) and to meet production goals (e.g., maximize net 

resent value) ( Dowd, Xu, & Coward, 2016 ). In this paper, we de- 

elop policies associated with enterprises that are under the con- 

rol of a single planner. We take exogenous factors (such as the 

rice of a commodity) as given, thereby omitting market influ- 

nces. However, this planner must still contend with uncertainty 

nherent to the mining operation. Because the market fluctuates 

rastically day-to-day, corporate policy tends to take a longer-term 

pproach with respect to metal price. Therefore, the tactical uncer- 
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ainty we consider addresses the duration of activities that must be 

xecuted to extract the mineral, and its grade. These act as prox- 

es for the overall uncertainty in the system, and serve to create 

table production levels, which, in turn, generate a stable revenue 

tream. We assume that all uncertainty associated with an under- 

round mining activity is only resolved completely when the activ- 

ty is completed. We propose using as a frame of reference a model 

hose solution yields a typical industry-derived schedule based on 

ean-value point estimates. 

The contributions of this paper are as follows: (i) a means 

o characterize uncertainty in duration and ore grade through 

ultiple scenarios; (ii) a new stochastic programming formulation 

hat takes into account uncertainty in duration and economic 

alue for each underground mining activity, maximizing expected 

et present value by defining an interval in which activities 

tart, rather than a precise moment in time; (iii) a corresponding 

ptimization-based heuristic; and, (iv) managerial insights in 

ontrast to those from a deterministic schedule. The remainder of 

his paper is organized as follows: Section 2 provides a literature 

eview of deterministic and stochastic mine planning models, 

ith an emphasis on underground operations; Section 3 in- 

roduces the creation of scenarios and a formulation of our 

nteger program; Section 4 describes our solution techniques, 

ncluding an optimization-based heuristic and the implications of 

elaxing certain constraints in our integer programming model; 

ection 5 presents results and corresponding analysis, while 

ection 6 concludes. 

. Literature review 

Underground scheduling is more difficult than its open-pit 

ounterpart ( O’Sullivan, Brickey, & Newman, 2015 ). The following 

actors are common sources of complexity: (i) the activity data, 

.g., durations, are heterogeneous; (ii) practical instances are par- 

icularly large, i.e., they contain many (discrete) variables and con- 

traints; and, (iii) there is an unstylized precedence structure and 

he graph corresponding to the precedence relationships between 

ctivities is dense. Trout (1995) first discusses a mixed-integer pro- 

ram to schedule underground ore extraction and backfilling activ- 

ties. Carlyle and Eaves (2001) expand Trout’s work by including 

evelopment activities for a platinum and palladium mine in Still- 

ater, Montana. Kuchta, Newman, and Topal (2004) and Newman 

nd Kuchta (2007) demonstrate a means to solve instances of a 

ixed-integer program that yields lower deviations from contracts 

ompared to manual practice at Kiruna Mine, Sweden. Nehring, 

opal, and Knights (2010) integrate operational and tactical un- 

erground mining schedules into a single mathematical model 

hrough minimizing deviation of targeted mill feed grade while 

aximizing net present value. O’Sullivan and Newman (2014) de- 

elop optimization-based heuristics that produce schedules for an 

nderground lead and zinc mine in Ireland with a complex set of 

recedence constraints. King, Goycoolea, and Newman (2017) de- 

ermine the boundary between open pit and underground min- 

ng, presenting corresponding schedules for both parts of the mine. 

rickey, Chowdu, Newman, Goycoolea, and Godard (2019) present 

ve-year tactical schedules at daily fidelity for Barrick’s Turquoise 

idge cut-and-fill mine. Some mine production scheduling prob- 

ems such as King et al. (2017) and Brickey et al. (2019) can be

ast in an Rcpsp -like framework. The main differences between 

his framework in a mining context and in a more classical con- 

ext are: (i) in mine scheduling problems, the goal is to maximize 

he (expected) net present value (NPV) of the mine while in the 

lassical Rcpsp , the typical objective is to minimize the makespan 

f the project; and (ii), in mining problems, each activity is option- 

lly executed, while in the classical Rcpsp , all activities must be ex- 

cuted. Research such as O’Sullivan and Newman (2014) , King et al. 
341 
2017) , and Brickey et al. (2019) incorporate greater operational de- 

ails than earlier work, which, in turn, produces more adoptable 

chedules. However, none of these references incorporates uncer- 

ainty into their scheduling paradigm, and all are therefore more 

uited to longer term, strategic mining. 

In reality, there is uncertainty associated with most inputs, 

.g., production rates, costs, and profits, of the mine planning pro- 

ess; point estimates do not necessarily generate feasible tactical 

chedules. The mining industry addresses uncertainty explicitly, 

ut not necessarily through optimization-based methods. Sari 

2009) utilizes stochastic modeling to evaluate the potential for 

ccidents and, correspondingly, worker-days lost, in a Turkish coal 

ine. The author combines statistical modeling and Monte Carlo 

imulations. In another safety-related application, Karacan and 

uxbacher (2010) model the performance of gob gas ventholes, 

hich are used to remove methane in previously mined areas of 

ongwall coal mines; as in Sari (2009) , their techniques include 

ulti-parameter regression models and Monte Carlo simulations 

o determine the variability in venthole performance. Researchers 

ave begun to incorporate uncertainty in their models to produce 

ore realistic mine plans. Rojas, Goodwin, Seron, and Zhang 

2007) formulate an optimal control policy for the extraction of 

re in an open pit mine, and demonstrate their methodology on 

 small example. Lamghari and Dimitrakopoulos (2012) develop 

euristic search techniques to solve an open pit mine produc- 

ion scheduling problem cast as a stochastic integer program 

hat accounts for uncertainty in metal content. Another common 

ractice in strategic decisions extends deterministic analysis by 

uantifying the effects of uncertainty at multiple, fixed levels of 

arket conditions ( Rossi, 2014 ). Reus, Pagnoncelli, and Armstrong 

2019) consider uncertainty related to production incidents such 

s strikes and accidents that may slow production and/or decrease 

xpected profits. Their stochastic program represents a strategic 

ine-planning model which they decompose to enable the inclu- 

ion of a very large number of scenarios over a 15-year planning 

orizon. Caldentey, Castro, Epstein, and Sauré (2019) apply real 

ptions to address price uncertainty for making capacity expansion 

ecisions in a long-term copper mining project. 

While these works consider uncertainty at an aggregate plan- 

ing level, other researchers focus on uncertainty at the block level 

n the production planning process. For instance, Alonso-Ayuso 

t al. (2014) provide an example of the inclusion of uncertainty in 

nderground mining with respect to copper price in a block cav- 

ng (underground) mine scheduling problem; their stochastic pro- 

ram considers many scenarios, and is then transformed into a 

eterministic equivalent. By testing value-at-risk and conditional- 

alue-at-risk strategies, they conclude that a very modest reduc- 

ion in expected profit with respect to the risk-neutral model can 

ffer significantly better risk control, measured as the probability 

f having negative profit, and the expected losses given that losses 

ill occur. Carpentier, Gamache, and Dimitrakopoulos (2016) seek 

 robust cut-off grade for a cluster of underground nickel mines 

hat use the same labor and material resources; their two-stage 

tochastic program includes decisions related to mine opening and 

losure, and incorporates precedence and elastic constraints on 

ining operations (e.g., development and extraction); the objec- 

ive maximizes net present value and minimizes deviation from 

arget production levels. Dirkx and Dimitrakopoulos (2018) also ac- 

ount for uncertainty in grade and drawdown rate in determining 

easibility of meeting long-term production targets for a potential 

ineral deposit using block cave mining. The authors use stochas- 

ic mixed-integer programming to maximize the net present value 

nd minimize production target deviation with respect to mining 

apacity, continuous extraction, production grade, inter-drawpoint 

recedence, and milling operations. Del Castillo and Dimitrakopou- 

os (2019) optimize production planning in the face of price and 
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eologic uncertainty for an open-pit mining complex. Their model 

onsiders long-term design and fleet sizing, as well as shorter term 

actical decisions. They apply their multi-stage model to a cop- 

er mine, and contrast their results with those from a two-stage 

odel. 

In a related vein, the literature of the Rcpsp under uncertainty 

ocuses on activity durations while neglecting that of profits and 

osts. Most of this literature assumes that the uncertain duration of 

he activities are random variables with a known (joint) probabil- 

ty distribution, with corresponding modeling frameworks broadly 

lassified as proactive and reactive ( Demeulemeester & Herroelen, 

011; Herroelen & Leus, 20 04; 20 05; Ortiz-Pimiento & Diaz-Serna, 

018 ). In proactive scheduling, the focus is on computing an ini- 

ial baseline schedule that is protected as much as possible against 

uture uncertainty. On the other hand, the goal of reactive schedul- 

ng is to amend a given baseline schedule or to create a schedule 

n real time, as uncertainty is revealed and activities and resources 

ecome available. Corresponding solution techniques are tested on 

nstances having very few activities (i.e., fewer than 120). More- 

ver, almost no solution method integrates the proactive and re- 

ctive approaches. The only exception to the latter restriction is 

avari and Demeulemeester (2019) , but with the limitation that 

he problem is modeled as a Markov Decision Process over a very 

estricted set of possible reactive policies. 

Our approach consists of an integrated proactive-reactive ap- 

roach for mine scheduling under stochastic activity duration and 

re grade uncertainty. It generates an initial baseline schedule that 

eeks to maximize the expected NPV of the mine, and initially as- 

igns to each activity a fixed time interval in which such an activity 

ust start to be executed for all possible realizations (i.e., scenar- 

os) of stochastic duration and ore grade. The only constraint im- 

osed on the reactive policy is that each activity must start within 

ts corresponding baseline time interval. Therefore, our approach is 

ntegrated since the (proactive) baseline schedule and the reactive 

olicy are both jointly determined. To the best of our knowledge, 

ur work is the first in the literature to propose the concept of 

aseline schedule with associated time intervals , which lends a dif- 

erent interpretation to the resulting schedule; specifically, having 

 time interval for each activity provides the practitioner with a 

lobal view of the project’s execution times. 

The optimization model that must be solved to obtain a base- 

ine schedule and its associated reactive policy corresponds to 

 multi-stage stochastic integer programming (MSIP) problem; 

ecision-dependent uncertainty is revealed as decisions are made. 

dding constraints linking randomness and decisions complicates 

he problem to such an extent that its solution must usually 

e derived using heuristics ( Jonsbråten, Wets, & Woodruff, 1998 ). 

he challenge is to maintain non-anticipativity; that is, decisions 

or scenarios that are indistinguishable up to some time period 

must be the same for all time periods up to t . Building on 

deas from Goel and Grossmann (2004) , we propose a novel multi- 

tage stochastic integer program for our mine scheduling prob- 

em that can handle non-anticipativity constraints in the context 

f decision-dependent uncertainty. 

Two-stage stochastic integer programming problems, which are 

 simpler subclass of MSIP problems, are challenging to solve due 

o the absence of convexity and to the presence of discontinu- 

ties in the expected cost function ( Ahmed, 2010 ). Several corre- 

ponding algorithms have been proposed, usually leveraging prob- 

em structure, e.g., simple recourse ( Haneveld, Stougie, & Van der 

lerk, 1995 ), continuous second-stage variables ( Liu, Fan, & Or- 

óñez, 2009 ), and binary variables ( Ntaimo, 2010 ). We refer the 

eader to several excellent surveys ( Carøe & Schultz, 1999; Han- 

veld & van der Vlerk, 1999; Küçükyavuz & Sen, 2017; Schultz, 

tougie, & Van Der Vlerk, 1996 ). 
t

342 
Given the complexity of our MSIP problem and the large size of 

ine scheduling problem instances, we do not attempt to solve the 

onolith directly. Rather, we propose a three-step optimization- 

ased heuristic that proceeds as follows. First, we relax the non- 

nticipativity and integrality constraints, and then we solve the re- 

ulting two-stage stochastic linear programming problem. Second, 

ased on the optimal solution of the problem solved in the first 

tep, we create a priority list of activities. Finally, using the priority 

ist, we build the baseline schedule and create the corresponding 

eactive policy. Two-stage stochastic linear programming problems 

ave been traditionally solved by the L-shaped method ( Van Slyke 

 Wets, 1969 ) and variations. We propose an alternative approach 

hat takes advantage of the Rcpsp structure of our problem. Specif- 

cally, we use a decomposition approach ( Muñoz et al., 2018 ) based 

n Bienstock and Zuckerberg (2010) . 

. Modeling 

We begin by conceptualizing our MSIP problem. Then, we 

odel uncertain problem parameters as random variables; the 

robability distributions of these random parameters are estimated 

rom geological and geotechnical data. Finally, we formally state 

he problem, i.e., we define the instance, decision variables, ob- 

ective function, and constraints that form our stochastic mine 

cheduling problem. 

We develop an integer-programming model that seeks to de- 

ermine when, if ever, various activities in an underground mine 

tart so as to maximize net present value subject to precedence 

onstraints between the activities, and resource constraints associ- 

ted with the execution of any given set of activities in a particular 

ime period. However, rather than solving the deterministic formu- 

ation, as given, e.g., in Brickey (2015) or Brickey et al. (2019) , we

dd uncertainty in the forms of: (i) the amount that the execution 

f an activity contributes to the net present value, and (ii) the du- 

ation required to execute any given activity. The solution to this 

ew stochastic programming model defines an interval in which 

ctivities start, rather than a precise moment in time, and consti- 

utes an integrated proactive-reactive approach by generating an 

nitial baseline schedule with the reactive policy that each activ- 

ty must start within its corresponding baseline time interval. Such 

olutions have an advantage over those generated by alternative 

pproaches in the literature: time-interval width, δ, provides the 

ecision maker a control on the variability of the starting times of 

he activities. We define the following notation: 

Sets 

symbol definition 

A all activities 

� sample space, ordered by scenario: 1, 2, ..., | �| 
Parameters 

symbol definition [units] 

δ ∈ N 0 time-interval width [time periods] 

The following example illustrates. Let us consider the schedul- 

ng of seven activities, i.e., |A| = 7 , over a sample space consisting 

f four scenarios, i.e., � = { 1 , 2 , 3 , 4 } . Furthermore, we alternatively

xamine the cases of δ = 0 and δ = 2 . The remaining components 

f the instances (which we define when presenting our complete 

athematical formulation) are identical in both cases and are ir- 

elevant for the purpose of this example. 

Fig. 1 contains a graphical representation of optimal solutions 

or the cases δ = 0 and δ = 2 , where the shades demonstrate that 

he execution times of each activity (i.e., the time periods at which 

he activity is under execution) present less variability in case 
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Fig. 1. The square brackets correspond to the time intervals associated with the baseline schedules; a colored square represents the corresponding activity being under 

execution at a given time period, and darker squares indicate that more scenarios cast an activity as in progress at that time. The optimal baseline schedule is represented 

by black diamonds. 

δ  

t

t

s

n

b

c

a

a

t

a

i

a

t

δ

3

h

o

r

b

t

t

r

p

n

m

r

o

k

c

s

g

t

B

d

t

a

c

t

S

o

a

g

d

g

p

a

2

c

l

g

a

o

l

t

t

s

c

v

t

p

u

r

m

3

p

= 0 than in case δ = 2 . For δ = 0 , the variability of the execution

imes is explained only by the variability of the parameters (dura- 

ion) because each activity starts at the same time period (repre- 

ented by the black diamond in the Fig. 1 a) in all scenarios. Alter- 

atively, for the case in which δ = 2 , activities do not necessarily 

egin at the baseline start time; the higher variability in the exe- 

ution times is explained both by the variability in the parameters 

nd by the variability in the starting times. 

A solution that provides less variability in the starting times, 

nd therefore less variability in the execution times, is attractive 

o the decision maker: it allows for anticipation regarding the time 

t which activities will be carried out. Nevertheless, less variability 

n the starting times requires smaller values of δ, which implies 

 lower expected net present value of the schedule. Consequently, 

here is a trade-off between starting-time variability (controlled by 

) and expected net present value of the schedule. 

.1. Representation of uncertainty in activity value and duration 

Geological uncertainty is inevitable with widely spaced drill 

oles ( Koushavand, Askari-Nasab, & Deutsch, 2014 ) from which ge- 

logical information is gained to construct a block model, and rep- 

esents the inability to accurately represent the grade, geologic 

oundaries, or other conditions of a rock mass ( Bruno, 2019 , Chap- 

er 12). This uncertain information is used to define activities and 

heir associated characteristics such as ore content and resource 

equirements for their execution, and gives rise to two uncertain 

arameters of interest in our application: economic and geotech- 

ic. The economic value of completing an activity depends on the 

ineralogical properties of the rock (such as grade concentration, 

ock hardness, grain size, and oxidation intensity), the capability 

f the mining operation (such as equipment capacity and mar- 

et demand), and the metallurgical efficiency of the milling pro- 

ess, inter alia. Matheron (1962) provides foundations for applying 

tatistical techniques to mineral resource reserve estimation and 

rade control. The related procedure using stochastic or geostatis- 

ical simulation is mature and well established ( Goovaerts, 1997 ). 

lock models record estimated grade for each unit of a spatially 

iscretized orebody, and are often a product of a simulation. While 

he procedure is valid, we seek an improvement by exploiting all 

vailable information. 

Geotechnic uncertainty, which arises from the inability to ac- 

urately estimate the quality of the rock, i.e., strength, composi- 

ion, and structure, has a direct effect on an activity’s duration. 

pecifically, because rock masses can be unbroken (at one extreme) 

r highly fractured (at the other), impacting their strength, the 

mount and type of resources to develop the necessary under- 

round infrastructure can vary considerably, and sometimes unpre- 
343 
ictably. Ground control mitigates poor rock quality through en- 

ineering protocols such as roof bolts, shockcrete, and other sup- 

orts, and the extent to which this control must be implemented 

ffects the time required to complete various activities ( Darling, 

011 , Chapter 8). 

We describe the nature of both economic and geotechnical un- 

ertainty, defining notation using the conventions that lower case 

etters are parameters and indices; upper case letters in calli- 

raphic font are sets, and upper case letters in roman font are vari- 

bles (see Teter, Newman, & Weiss, 2016 for guidelines). Hats and 

ver-bars differentiate sets that represent similar entities. Without 

oss of generality with respect to our optimization framework, we 

reat random parameters v ω a and d ω a as independent of each other. 

Parameters 

symbol definition [units] 

v ω a ∈ R value of completing activity a ∈ A in scenario ω ∈ � [dollars] 

d ω a ∈ N duration of activity a ∈ A in scenario ω ∈ � [time periods] 

To estimate value parameters, v ω a , we use a standard geostatis- 

ical approach. We consider a continuously varying quantity over a 

patial domain D ⊂ R 

3 , and model the estimates as a Gaussian Pro- 

ess, defined by the property that any finite combination of obser- 

ations from D follows a multivariate normal distribution. Within 

his framework, we use a procedure based on the Cholesky decom- 

osition of the data variance-covariance matrix � to simulate val- 

es ( Cressie, 1991 ). Modeling the random duration parameters d ω a 

equires an ad-hoc approach given that the available data in typical 

ines consists of estimates with only one value for each activity. 

.2. Problem statement 

An instance of our problem requires the following additional in- 

uts: 

Sets 

symbol definition 

P a ⊆ A activities that must be completed before 

activity a ∈ A can start 

R resource types required to execute activities 

T time periods 

Parameters 

symbol definition [units] 

γ ∈ R + value discount factor per time period [–] 

q̄ r ∈ R + quota of resource r ∈ R available (renewable) [units/time 

period] 

q ar ∈ R + amount of resource r ∈ R consumed by 

activity a ∈ A 

[units/time 

period] 
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Table 1 

We provide the value, v ω a , and 

duration, d ω a , for each activity 

and scenario in the example. 

v ω a d ω a 

ω 1 ω 2 ω 1 ω 2 

a 1 1 1 2 1 

a 2 1 1 4 4 
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s

t

u
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a

a

a  

a

D

g
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s
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X

Regarding random value and random duration of each activity, 

e note that, aside from very special cases, MSIP problems cannot 

e solved explicitly for arbitrary probability distributions due to 

he presence of the expected multi-stage cost. A common approach 

s to replace the expected value by an average over a finite set 

f scenarios using the Sample Average Approximation ( Kleywegt, 

hapiro, & Homem-de Mello, 2002; Linderoth, Shapiro, & Wright, 

006 ) by generating samples from the distribution of the random 

lements. Consequently, we assume that the sample set � is finite 

nd that the probability of occurrence of each scenario is equal to 

 / | �| . We also assume that the number of time periods in T cor-

esponds to the set of consecutive natural numbers between 1 and 

 , where T is a given natural number. The decision variables of the 

roblem are the following: 

Variables 

symbol definition 

X ω at 1 if activity a starts at time period t in scenario ω, 0 

otherwise 

Y at 1 if the baseline start time of activity a is equal to time 

period t, 0 otherwise 

Z ωω ′ 
t 0 if X ω at = X ω 

′ 
at for activity a, time period t, and scenario pair 

{ ω , ω 

′ } 
Finally, our MSIP problem can be stated as follows. 

S ) max 
X ω at , Y at , Z 

ωω ′ 
t 

1 

| �| 
∑ 

ω∈ �

∑ 

t∈T 

∑ 

a ∈A 
γ t+ d ω a −1 · v ω a · X 

ω 
at (1) 

.t. 
∑ 

t∈T 
X 

ω 
at ≤ 1 a ∈ A;ω ∈ � (2) 

t ∑ 

t ′ =1 

X 

ω 
at ′ ≤

t−d ω 
a ′ ∑ 

t ′ =1 

X 

ω 
a ′ t ′ a ∈ A; a ′ ∈ P a ; t ∈ T ; ω ∈ � (3) 

∑ 

a ∈A 

t ∑ 

t ′ = max { 1 ,t−d ω a +1 } 
q ar · X 

ω 
at ′ ≤ q̄ r r ∈ R; t ∈ T ;ω ∈ � (4) 

t ∑ 

t ′ =1 

Y at ′ ≤
min { T,t+ δ} ∑ 

t ′ =1 

X 

ω 
at ′ a ∈ A; t ∈ T ; ω ∈ � (5) 

t ∑ 

t ′ =1 

X 

ω 
at ′ ≤

min { T,t+ δ} ∑ 

t ′ =1 

Y at ′ a ∈ A; t ∈ T ; ω ∈ � (6) 

 

ω ω ′ 
t ≤

∑ 

a ∈D ωω ′ 

( 

t−d ω a ∑ 

t ′ =1 

X 

ω 
at ′ + 

t−d ω 
′ 

a ∑ 

t ′ =1 

X 

ω ′ 
at ′ 

) 

t ∈ T ;ω,ω 

′ < ω ∈ � (7) 

 

ω ′ 
at − Z ω ω 

′ 
t ≤ X 

ω 
at ≤ X 

ω ′ 
at + Z ω ω 

′ 
t a ∈ A; t ∈ T ;ω, ω 

′ < ω ∈ � (8) 

 

ω 
at , Y at , Z 

ω ω ′ 
t binary a ∈ A; t ∈ T ; ω , ω 

′ < ω ∈ � (9) 

The objective, represented by (1) , is to maximize the expected 

et present value of the reactive policy; constraints (2) allow activ- 

ties to start within the time horizon, and only once, if at all. Con- 

traints (3) impose the precedence constraints: activities can start 

nly after their predecessors have been completed. Constraints 

4) enforce resource constraints: the resources consumed in each 

ime period cannot exceed the amount of available resource. Con- 

traints (5) and (6) impose the time-interval condition: activities 

ust start within δ time periods of the baseline for all scenarios. 
344 
inally, constraints (7) and (8) enforce the non-anticipativity con- 

traints: if a pair of scenarios are indistinguishable up to a given 

ime period, then the schedule for those scenarios must coincide 

p to that time period. In particular, given a pair of scenarios ω
nd ω 

′ , the set of differentiating activities , D 

ω ω ′ ⊆ A , contains the 

ctivities that allow us to differentiate both scenarios, i.e., those 

ctivities that have different duration and/or value for scenarios ω
nd ω 

′ . Formally, this set (see Goel & Grossmann, 2004 ) is defined

s follows: 

 

ω ω ′ = { a ∈ A : d ω a � = d ω 
′ 

a ∨ v ω a � = v ω ′ a } . 

Note that constraints (7) and (8) depend on the information 

ained through completing activities. Specifically, when Z ω ω 
′ 

t = 0 , 

hen constraint (8) forces X ω at = X ω 
′ 

at ; and, when Z ω ω 
′ 

t = 1 , con-

traint (8) is void. For the sake of simplicity, we refer to these con- 

traints as non-anticipativity constraints, despite the fact that they 

re conditional non-anticipativity constraints, and should not be 

onfused with the traditional non-anticipativity constraints found 

n standard stochastic programming textbooks ( Birge & Louveaux, 

011 ). The following example shows how non-anticipativity con- 

traints (7) and (8) distinguish scenarios. 

Example: We assume that there are two activities ( a 1 and a 2 ) 

nd two scenarios ( ω 1 and ω 2 ). The time limit of the project, T , is

qual to 6. Moreover, there is only one unit of resource available 

er time period, and activities consume one unit of resource per 

ime period of execution. For simplicity, we assume that: (i) we 

eed not create a baseline schedule; and, (ii) there are no prece- 

ence constraints. Table 1 provides the value and duration for each 

ctivity in each scenario. 

Let us consider two execution policies: in the first, activity a 1 is 

xecuted first, followed by activity a 2 ; in the second, the reverse. 

ig. 2 represents both execution policies. 

We note that the set of differentiating activities is composed 

nly by activity a 1 , i.e., D 

ω 1 ω 2 = { a 1 } . Let us first analyze Policy 1.

ooking at its corresponding Gantt chart, we see that, from the be- 

inning of time period 2 on, both scenarios are differentiated since 

ctivity a 1 is completed at the end of time period 1 in scenario 

 2 . Thus, constraints (7) impose Z 
ω 1 ω 2 
1 

= 0 . This fact, together with

onstraints (8) , implies that X 
ω 1 
a 1 1 

= X 
ω 2 
a 1 1 

and X 
ω 1 
a 2 1 

= X 
ω 2 
a 2 1 

. On the

ther hand, constraints (7) imply that Z 
ω 1 ω 2 
t ′ is equal to 0 or 1 

or the remaining time periods t ′ = 2 , . . . , 6 . Therefore, constraints

8) are inactive, which implies that X 
ω 1 
a 1 t 

′ is not necessarily equal 

o X 
ω 2 
a 1 t 

′ for each time period t ′ = 2 , . . . , 6 . Analogously, X 
ω 1 
a 2 t 

′ is not

ecessarily equal to X 
ω 2 
a 2 t 

′ for each time period t ′ = 2 , . . . , 6 . 

Now, let us analyze Policy 2. In its Gantt chart, we see that dif- 

erentiating activity a 1 is completed only at the end of time period 

 in scenario ω 2 . Therefore, constraints (7) imply that Z 
ω 1 ω 2 
t ′ = 0 ,

nd, by constraints (8) , X 
ω 1 
a 1 t 

′ = X 
ω 2 
a 1 t 

′ and X 
ω 1 
a 2 t 

′ = X 
ω 2 
a 2 t 

′ for each time

eriod t ′ = 1 , . . . , 5 . At time period 6, Z 
ω 1 ω 2 
6 

is equal to 0 or 1, and

onstraints (8) are inactive. Thus, X 
ω 1 
a 1 6 

is not necessarily equal to 

 

ω 2 
a 6 

, and X 
ω 1 
a 6 

is not necessarily equal to X 
ω 2 
a 6 

. 

1 2 2 
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Fig. 2. Here, we provide the Gantt charts and tables showing time along the x -axis. Activity a 1 and a 2 share resource r 1 , resulting in two possible policies. In a policy, each 

scenario has its own schedule, and schedules within a policy are identical to the left of the dotted line. 
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. Solution methodology 

Instances of problem (S ) cannot be solved in polynomial time 

under the assumption that p � = np ). The Rcpsp is known to be np -

ard ( Blazewicz, Lenstra, & Kan, 1983 ), and reduces to (S ) with

 �| = 1 (and, therefore, without constraints (5) –(8) ). Realistic in- 

tances of tactical underground mining problems are large, often 

ncluding thousands of activities, hundreds of time periods, and 

ultiple scenarios, making it impossible to solve (S ) in an oper- 

tionally feasible amount of time (e.g., hours) by directly apply- 

ng a standard mixed-integer programming solver to the monolith. 

urthermore, ad hoc algorithms designed for scheduling problems 

ith deterministic parameters exploit structure that is absent in 

ur multiple-scenario case. 

It is possible to strengthen (S ) by reformulating constraint (7) ; 

or example, the number of terms on its right-hand side could 

e reduced by including only the more limiting of the two sum- 

ations based on activity duration. Another potential formulation 

nhancement sums constraint (7) over a and its union of prede- 

essors. While valid and potentially useful, numerical results indi- 

ate that the linear relaxation of our proposed formulation is tight; 

t any rate, the first suggestion increases the density of the con- 

traint set. On the other hand, preliminary numerical testing in- 

icates that the RAM storage requirements (which grow with the 

ensity of the constraint matrix) are more limiting than the quality 

f the linear programming relaxation. Modeling conditional non- 

nticipativity requires constraints which are theoretically necessary 

o craft solutions given our multi-scenario setting. However, the 

umber and density of these constraints, specifically, constraints 

7) and (8) , contribute significantly to the difficulty of solving (S ) . 

e therefore initially relax these constraints, calling the resulting 

roblem (S −) . Not only does this relaxation remove “difficult” con- 
(

Table 2 

We give a description of the heuristic by phases, wh

Phase H 3 produces a feasible solution, (X, Y ) . 

Phase Input → Algorithm 

H 1 Instance of (S ) Bienstock-Zuckerber

H 2 (X ′ , Y ′ ) Simple Sort (See Algo

H 3 Priority List List Scheduling (See 

345 
traints, it reduces the model to one with an Rcpsp -like structure, 

menable to solution via an academic research solver. Specifically, 

mp Solver ( Rivera, Goycoolea, Moreno, & Espinoza, 2015 ) is capa- 

le of quickly finding the optimal solution to the linear relaxation 

f problem (S −) for realistically sized instances by using a tailored 

inear programming algorithm ( Muñoz et al., 2018 ) which decom- 

oses the problem ( Bienstock & Zuckerberg, 2010 ). We refer to the 

inear programming relaxation of problem (S −) as ( LS −) . 

Table 2 describes the linear programming-based heuristic H in 

hree steps. First, H 1 solves the linear program, ( LS −) . Let ( X ′ , Y ′ )
e the corresponding optimal solution. Second, H 2 conducts a Sim- 

le Sort as follows: (i) determine a mean baseline start time , MS a =
 

t∈T tY ′ at , for each activity a ∈ A ; (ii) discard all activities a ∈ A
ith MS a < 0 . 5 ; and, (iii) sort, non-decreasing by mean start time,

o produce a Priority List (Appendix A, Algorithm 1 ). Third and fi- 

ally, H 3 , given the priority list, applies a list-scheduling heuristic 

Appendix A, Algorithm 2 ) in order to obtain a feasible solution, 

X, Y ) , for problem (S ) . A proof of correctness of Algorithm 2 is

ound in Appendix B. 

. Case study 

The case study for this investigation is a United States-based, 

arge-scale underground mine at which annual production is ap- 

roximately 1.8 million tons of material (ore and waste) and 

70,0 0 0 troy ounces of gold ( Brickey, 2015 ). The mine uses an

nderground stoping method that consumes five resources (see 

able 3 ) associated with development, extraction, backfill, and 

ther ancillaries. We use a value of 1 time period for δ and a daily, 

.e., per time period, discount rate of 0.02%. Each of the 15,773 ac- 

ivities has (i) a type, (ii) precedence and resource requirements, 

iii) a value (which can be negative) and (iv) a duration . We 
ich includes inputs, algorithms, and outputs. 

→ Output 

g (X ′ , Y ′ ) 
rithm 1 , Appendix A) Priority List 

Algorithm 2 , Appendix A) (X, Y ) 
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Table 3 

Five resources adapted from our case study constrain activity completion. 

Constraint Constrained Activity Types Upper Bound Units 

Total tonnage Development, mining and all backfill 11,000 [tons/day] 

Total tonnage Cement and paste backfill 5,000 [tons/day] 

Total tonnage Unconsolidated rock backfill 2,500 [tons/day] 

Ore tonnage Development and mining 6,000 [tons/day] 

Footage Development 155 [feet/day] 

Concurrent activities Vertical development 1 [activity/day] 

Fig. 3. We show the normality of grade , and provide a histogram of 159 grade observations used for simulations, displayed in fifteen bins. We also depict the Normal 

Quantile-Quantile (Q-Q) Plot of grade with the theoretical reference line superimposed in blue. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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escribe first how we generate scenarios based on attributes (iii) 

nd (iv) to populate instances of our MSIP problem, (S ) , and then

ow we solve it via the method outlined in Table 2 . 

.1. Scenario development 

Activity grade is derived from simulations of the gold con- 

entration in the orebody given borehole sample data; the fea- 

ure grade represents the concentration of gold estimated in troy 

unces per ton, and yields a way to compare concentrations of 

old over space because, for each activity, the feature accounts 

or the mass of rock to be mined. We restrict for which activi- 

ies to model uncertain grade and for which to hold their val- 

es constant. Grade values used to calculate the revenue compo- 

ent of value (from the sale of gold extracted) are adjusted from 

he block model values, which are based on the physical estimated 

alue of gold in the orebody, and incorporate recovery rates asso- 

iated with mining and processing. 

To model value, we only consider activities associated with 

ining-specific types, i.e., we do not consider development or an- 

illary activities. These are Stope-Mining , Up-Hole , Cut-Fill , and 

loor-Pull . Of the original 15,773 activities, this leaves 1,509. We 

urther limit this number to high-grade activities based on the as- 

umption that the majority of the grade uncertainty lies in this set. 

his further reduces the set to 159 activities. Let { s 1 , . . . , s 159 } ∈ R 

3 

e the locations of the data and { ̂  v ( s 1 ) , . . . , ̂  v ( s 159 ) } be the values

f grade observed at those locations. 

Fig. 3 shows that { ̂  v ( s 1 ) , . . . , ̂  v ( s 159 ) } appears within a tolerance

f normality to accept the Gaussian Process assumption as a model 
346 
or these data. We conduct a formal test for spatial dependence 

ith Moran’s I-score ( Moran, 1950 ), a type of correlation coeffi- 

ient which measures spatial dispersion or correlation present in 

 data set based on observation proximity. We can formally check 

or spatial dependence by testing a null hypothesis of purely ran- 

om spatial observations. Fig. 4 a shows Moran’s I-score as a func- 

ion of the number of neighbors, which we determine to be 0.50 

ith k = 3 neighbors, suggesting moderate spatial autocorrelation. 

or each number of neighbors k, the Moran’s I-score tests as sig- 

ificant. We then center the data to form a mean-zero Gaussian 

rocess. 

We determine whether the resulting mean-zero Gaussian Pro- 

ess forms a second-order stationary random field. The stationarity 

ssumption must be checked to validate subsequent analysis and 

o produce accurate simulations although, in practice, it is almost 

lways an approximation. Bandyopadhyay and Rao (2017) provide a 

ethod for evaluating the presence of non-stationarity with irreg- 

larly spaced spatial data, which uses a Discrete Fourier Transform 

f the observations. If the resulting Fourier coefficients are “nearly 

ncorrelated,” then the underlying spatial process is second-order 

tationary; otherwise, this property does not hold. We pose a null 

ypothesis that v (·) is a second-order stationary random field; 

ests yield a statistic of 6.60 with a corresponding p-value of 0.22. 

e therefore fail to reject the null hypothesis, and maintain the 

tationarity assumption. 

We investigate appropriate covariance functions to model the 

entered data. A classic family consists of the Matérn covariance 

unctions. While flexible, they depend upon a collection of esti- 

ated parameters: The smoothness parameter, ν, is particularly 
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Fig. 4. We show Moran’s I-score as a function of the number of neighbors, and the log-likelihood as a function of smoothness assuming a Matérn covariance function over 

the centered grade data. 
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ifficult to estimate directly from the data, so instead we evalu- 

te the performance of a set of Matérn covariance functions for a 

ange of chosen values for ν: 0.10, 0.25, 0.50, 0.75, 1.00, 1.25, and 

.50. Fig. 4 b shows the log-likelihood of a Matérn covariance func- 

ion for these values. The maximum log-likelihood occurs where 

= 1 . 25 ; however, a close second maximum occurs where ν = 1 .

n fact, the log-likelihood values for each of these choices of ν
gree up to two decimal places, and so, in practice, would perform 

uite similarly. Given these two options, we select ν = 1 because: 

i) a Matérn covariance function with smoothness ν assumes that 

he underlying spatial field is � ν − 1 � times differentiable (imply- 

ng that with ν = 1 , there is no differentiability assumption); and, 

ii) taking ν = 1 with a Matérn covariance function is a special 

ase known as a Whittle covariance function ( Guttorp & Gneiting, 

006 ). Because we are reverse-engineering the simulation process 

hat gave rise to the values of grade present in our data, it seems

ore likely that the simulators would choose a Whittle covariance 

unction over setting ν ≈ 1 . 25 given its popularity in geostatistical 

pplications. A Whittle covariance function is also dependent upon 

 range parameter; checking a fine grid yields θ = 54 ft to maxi- 

ize the likelihood. 

With our chosen covariance function, we construct the 

ariance-covariance matrix �. We then use the Cholesky decompo- 

ition method to simulate grade across the spatial field ( Cressie, 

991 ). This method is valid for general multivariate Gaussian ran- 

om variables and does not require a stationary or isotropic covari- 

nce function. 

We now turn our attention to the second source of uncer- 

ainty, that associated with an activity’s duration . Related to 

his, we note that there are six rock densities reflecting the dif- 

erent rock types present in the mine, which is partitioned into 

even regions such that each region is labeled a ground risk area 

see Fig. 5 ). Incorporating information regarding these qualitatively 

ifferent areas of the mine into our duration simulations enables 

s to account for geotechnical uncertainty. There is a unique ob- 

ervation for each activity in each geological risk area in our data 

et. 

For a scenario ω ∈ � and activity a ∈ A , we model duration as

 

ω = � ̂  d a + βω � , where ̂ d a is the duration of activity a in the data
a a t

347 
et used in a deterministic model derived from industry standards 

nd βω 
a accounts for variability associated with geotechnical un- 

ertainty. (Note that the rounding function, which we denote �·� , 
hould equal at least 1, because we assume that the duration is 

 positive integer – for compatibility with the way in which our 

nteger program handles time fidelity.) Let f g be a scaling factor 

epresenting the “worst-case” duration increase resulting from an 

ctivity occurring in a ground risk area g. For each scenario ω ∈ �

nd ground risk area g, we generate U 

ω 
g ∼ U[ −1 , 1] and define

ω 
a = f g ̂

 d a U 

ω 
g . We make this modeling decision because, within a 

indow for a given activity duration, we assume all other dura- 

ions are equiprobable. An additional benefit is that the expected 

alue of βω 
a is zero, in which case we recover in expectation the 

nitial duration estimate ̂ d a . 

We incorporate only a modest number of scenarios (five), com- 

ensurate with the intuition of mine operators and on par with 

he resulting size of instances in the literature (based also on 

he number of activities and length of time horizon) ( Consuegra 

 Dimitrakopoulos, 2010; Leite & Dimitrakopoulos, 2007 ). Us- 

ng these scenarios, we demonstrate how our procedure yields 

olutions in an operationally feasible amount of time, whereas 

 straightforward application of a state-of-the-art solver to the 

onolith solves only the smallest instance. Then, we compare so- 

ution quality of the stochastic programming model to that of a de- 

erministic problem, (D ) ; the latter assumes a single scenario with 

eans for value and duration of each activity a ∈ A over all sce- 

arios, given as v̄ a and d̄ a , respectively. 

.2. Results 

All experiments were run using the following hardware: a Sun 

ire X2270 M2 with two Intel Xeon X5675 processors at 3.07 GHz, 

8 GB RAM and under the Ubuntu 18.04 operating system. All al- 

orithms were implemented in Julia 1.0.5 and run in serial mode, 

.e., on a single thread, to avoid memory overflows. The exact solu- 

ion of all linear and integer programming problems were obtained 

ith CPLEX 12.10.0.0 through its Julia interface, JuMP. 

In order to test the efficacy of our heuristic and the quality of 

he solutions it provides relative to (i) solving the deterministic 
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Fig. 5. Given a design, the location of activities can be mapped to ground risk areas g through expert analysis of borehole data. 

Table 4 

We conduct numerical experiments on these four problem variants using the methods outlined in the third 

column and with the problem characteristics given in the remaining columns. 

Problem Solution Method Treatment of Non- | �| Value Duration 

technique uncertainty anticipativity 

(S ) exact CPLEX stochastic yes 5 v ω a d ω a 

(S −) exact CPLEX stochastic no 5 v ω a d ω a 

(D ) heuristic H 1 + H 2 + H 3 deterministic NA 1 v̄ a d̄ a 
(S ) heuristic H 1 + H 2 + H 3 stochastic yes 5 v ω a d ω a 

Table 5 

We provide solution times for the problems given in Table 4 . 

All instances contain five scenarios ( | �| = 5) and five resources 

( |R| = 5). Solutions for the linear programming relaxation found 

via the Bienstock-Zuckerberg algorithm (used in the heuris- 

tic) subscribe to the following termination criterion: minimum 

{eight hours of computation time, a duality gap of less than or 

equal to 0.01%}. 

Instance Solution Times 

Exact Solve H 1 + H 2 + H 3 

|A| T (S ) (S −) (D ) (S ) 

[activities] [days] [sec] [sec] [sec] [sec] 

56 50 41 29 1 1 

396 200 † † 8 16 

646 300 † † 57 109 

1,453 600 † † 1,507 1,231 

2,323 900 † † 6,293 4,466 

3,150 1,200 † † 15,723 14,987 

3,828 1,500 † † 28,495 33,769 

4,330 1,800 † † 30,323 32,731 

4,764 2,100 † † 31,017 31,076 

† Exceeds available computer memory 
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quivalent and (ii) solving the stochastic program in its monolith 

orm, we present a variety of numerical experiments ( Table 4 ). 

Table 5 reports solution times. Solving the monolith directly for 

S ) , and even for (S −) , i.e., without the non-anticipativity con-
348 
traints, is only possible for the smallest instance, i.e., that con- 

aining 56 activities, and requires an order of magnitude more time 

han our proposed heuristic ( Section 4 ). For the smallest three in- 

tances, solutions from the stochastic program require more time 

o obtain than those from the deterministic equivalent; however, as 

roblem size increases, solving the linear-programming relaxation 

an be as difficult for the deterministic as the stochastic case. In 

he largest instances, both cases reach a time limit. In all instances, 

olution times are dominated by the execution of the Bienstock- 

uckerberg algorithm, and fall within ten hours (even if an eight- 

our time limit for the execution of the Bienstock-Zuckerberg al- 

orithm is reached for the largest three); nonetheless, we obtain 

oodquality solutions. 

Table 6 shows the expected net present value, given by (1) , for 

ach case listed in Table 4 . The smallest instance, which is solvable 

ia both exact and heuristic methods, demonstrates equal objec- 

ive function values. We note that the linear programming relax- 

tion objective function values tend to be particularly tight for the 

ollowing three reasons. First, despite the fractionation in the LP 

elaxation solution, activities are usually completed by the end of 

he horizon; so, the effect of the fractionation is that parts of activ- 

ties can be moved around in the schedule, rather than “canceled”

ltogether. This movement affects the objective function value only 

y the discount factor, which, for our daily-fidelity model, is 0.02%. 

nd, many fractionated activities tend to be adjacent in time be- 

ause of the precedence constraints, implying that large costs can- 
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Table 6 

We provide expected net present value for the problems given in Table 4 . All instances con- 

tain five scenarios ( | �| = 5) and five resources ( |R| = 5). ‡ ˆ Z ( LS − ) corresponds to an upper bound 

on the objective value of problem ( LS −) obtained via the dual bound; Z (S ) corresponds to the 

objective value of the best feasible solution found for problem (S ) . 

Instance Objective Function Values Optimality Gap 

Exact Solve H 1 + H 2 + H 3 BZ 
(

ˆ Z ( LS − ) −Z (S ) 

Z (S ) 

)‡ 

|A| T (S ) (S −) (D ) (S ) ( LS −) 

[activities] [days] [$M] [$M] [$M] [$M] [$M] [%] 

56 50 0.96 0.96 0.96 0.96 0.96 0.02 

396 200 † † 14.79 14.78 14.78 0.03 

646 300 † † 33.14 33.12 33.12 0.01 

1,453 600 † † 101.00 100.69 100.75 0.07 

2,323 900 † † 187.90 186.84 186.99 0.09 

3,150 1,200 † † 267.24 265.05 265.35 0.12 

3,828 1,500 † † 335.66 332.20 332.66 0.19 

4,330 1,800 † † 375.02 370.42 370.94 0.16 

4,764 2,100 † † 409.83 403.50 404.35 0.56 

† Exceeds available computer memory 

Table 7 

We measure μ (makespan), φ (the last feasible time period in the schedule), and η (expected 

count of completed activities) for solutions found via the deterministic and stochastic opti- 

mization models. Model (D ) uses a single scenario derived from the mean, while (S ) uses 

five scenarios ( | �| = 5); both models consider five resources ( |R| = 5). 

Instance Measures of Utility 

(D ) (S ) 

|A| T μ φ η μ φ η

[activities] [days] [days] [days] [activities] [days] [days] [activities] 

56 50 10 2 27 11 50 27 

396 200 69 2 229 88 200 229 

646 300 117 2 423 149 300 423 

1,453 600 296 4 1,117 368 600 1,119 

2,323 900 685 3 1,952 874 900 1,953 

3,150 1,200 929 4 2,766 1,194 1,200 2,764 

3,828 1,500 1,159 2 3,366 1,480 1,500 3,364 

4,330 1,800 1,280 4 3,812 1,671 1,800 3,814 

4,764 2,100 1,339 4 4,179 1,715 2,100 4,178 
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ot be relegated to the end of the horizon at an unrealistically 

ighly discounted value. Second, our objective function lacks large 

xed charges; correspondingly, the values assessed are all associ- 

ted with the same “type” of decision variable, namely, the execu- 

ion of an activity. Third, in the optimal integer-programming so- 

ution, the resource constraints tend to be reasonably tight; that 

s, the linear programming solution is not able to “cram” fractions 

nto the bottleneck resource constraints in a way that the inte- 

er solution precludes. In fact, TopoSort handles the resource con- 

traints well; other authors have observed this same behavior with 

imilarly structured problems, e.g., Brickey et al. (2019) . Further- 

ore, this performance extends to instances with as many as 30 

cenarios, which we can solve to within 3.06% of optimality within 

bout thirty hours of computation time, even for the largest in- 

tances tested here (where the bulk of the computation is spent in 

nput and output procedures). 

The objective function values for all instances show negligible 

ifferences between those produced by the deterministic (D ) 

ersus stochastic (S ) and ( LS −) models. This might suggest that 

ncorporating stochasticity is not important. However, we further 

nalyze the solutions via three metrics: makespan , feasibility , and 

xpected count of completed activities , and conclude that the results 

rom the stochastic program are more realistic, and therefore 

mplementable in a production setting, while not sacrificing 

ignificant objective function value. 

In order to assess the quality of the solutions, we introduce a 

ariety of metrics, the first of which is the makespan , given by μ
nd defined in Eq. (10) as the last time period with an activity 

nder execution, as follows: 
349 
= max 
a ∈A ,ω∈ �

{∑ 

t∈T 
t · X 

ω 
at + d ω a − 1 

}
(10) 

We also measure the feasibility of a schedule, which is necessar- 

ly satisfied for any solution of the stochastic programming models, 

S ) and (S −) . For the deterministic model (D ) , feasibility implies,

or the original five scenarios in �, the satisfaction of integrality, 

nd constraints (3) and (4) (shown again here): 

t ∑ 

t ′ =1 

X 

ω 
at ′ ≤

t−d ω 
a ′ ∑ 

t ′ =1 

X 

ω 
a ′ t ′ a ∈ A; a ′ ∈ P a ; ω ∈ �

∑ 

a ∈A 

t ∑ 

t ′ = max { 1 ,t−d ω a +1 } 
q ar · X 

ω 
at ′ ≤ q̄ r r ∈ R; ω ∈ �

Invariably, there exists some time period(s) in which one or 

ore of these precedence and/or resource constraints is not sat- 

sfied, and our measure φ is given as the last feasible time period 

n the schedule, i.e., the last time period before rescheduling is re- 

uired to resolve the infeasibility: 

= max 
ˆ t ∈T 

{
ˆ t such that (3) and (4) both hold for all t ≤ ˆ t 

}
(11) 

That is, in the absence of scenario consideration that the 

tochastic program affords, the schedule in the “out years” cannot 

e executed without a correction policy; it is precisely the ambi- 

uity of determining such a policy that motivates us to avoid re- 

olving model instances that become infeasible. The longer term 

chedules we produce are used to commit equipment and other 
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esources throughout the planning horizon. So, postponing the 

chedule leads to a misallocation of resources whose resulting cost 

s difficult to quantify. Activities cannot be skipped because prece- 

ence would be violated. (For example, ore cannot be extracted 

rom a stope before the area is drilled and the rock blasted.) Mine 

lanners do reschedule, because unanticipated occurrences happen 

requently. However, an optimization model affords a mine planner 

ith the best possible action plan given the current information, 

nd minimizing the number of rescheduling activities minimizes 

isruption to this plan. 

Finally, unlike typical project scheduling in which all activities 

re executed, activities are optional in an underground mine. De- 

erministic models have the clairvoyance not to schedule activities 

hat offer little value. Eq. (12) defines the measure η as the ex- 

ected count of completed activities : 

= 

1 

| �| 
∑ 

ω∈ �

∑ 

t∈T 

∑ 

a ∈A 
X 

ω 
at (12) 

We record each of these metrics, μ, φ, and η in Table 7 for 

he nine instances given in Tables 5 and 6 in both the determin- 

stic, (D ) , and stochastic, (S ) , settings. Corresponding to intuition, 

he makespans are all longer for the stochastic programming solu- 

ions for which the corresponding model incorporates uncertainty 

rom a variety of scenarios, resulting in some longer durations that 

S ) accommodates owing to feasibility requirements. As expected, 

he deterministic model becomes infeasible early on in the sched- 

le relative to the entire horizon, while the stochastic program 

aintains feasibility for the entire horizon. We now see that the 

mall degradation in objective function in the stochastic program 

 Table 6 ) is more than offset by the gain in feasibility with re-

pect to the five scenarios. Finally, the number of activities exe- 

uted is similar for solutions from both the stochastic and deter- 

inistic programs, indicating that the real quantitative difference 

ies in the makespan. This signifies that the uncertainty prolongs 

he duration of the activities and, hence, the schedule, but does 

ot, generally speaking, transform a profitable activity into an un- 

rofitable one. 

. Conclusions 

Assuming perfect knowledge of value and duration for each ac- 

ivity in an underground mining operation may yield inaccurate 

ine schedules. Mine planning decisions require input parame- 

ers for which only estimates are available. We present a realistic, 

ut intractable, stochastic programming model and demonstrate 

hat by relaxing certain constraints and developing a heuristic 

hat exploits the resulting mathematical structure, we can obtain 

ood-quality solutions, feasible for practical time horizon lengths, 

ven in the presence of the relaxed (non-anticipativity) constraints, 

ithin hours. We further demonstrate empirically that the solution 

uality improves relative to that from a deterministic equivalent 

ased on point estimates of value and duration data. 

Alternate heuristic solution strategies might incorporate a prior- 

ty list πa of activities a for (S ) from a mine planner. Additionally, 

ur solution approach could be adapted for solving problems in 

ore general settings. In particular, the principle of first solving a 

wo-stage linear programming problem and then heuristically en- 

orcing non-anticipativity and integrality constraints can be applied 

o general MSIP problems with decision-dependent uncertainty. Fi- 

ally, we assume that while duration is uncertain, resource con- 

umption is deterministic. Future work might incorporate the ideas 

f Demeulemeester, De Reyck, and Herroelen (20 0 0) to relax this 

ssumption, though a corresponding solution technique for large 

nstances remains elusive. 
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ppendix A 

Algorithm 1: Simple Sort H 2 

Data : LP relaxation values Y ′ from having solved ( LS −) in H 1 

with OMP 

Result : List of mean starting times, MS, and sorted list of 

activities, SL 

1 compute mean starting time, MS[ a ] , of each activity a ∈ A : 

MS[ a ] ← 

∑ 

t∈T t · Y ′ at ; 

2 construct set, A 

′ , of activities that will be executed: 

A 

′ ← { a ∈ A : MS[ a ] ≥ 0 . 5 } ; 
3 sort activities in set A 

′ non-decreasing by MS[a] and assign 

to ordered list SL ; 

4 return lists MS and SL ; 

Algorithm 2: List-Scheduling Heuristic H 3 . 

Data : List of mean starting times, MS, and sorted list of 

activities, SL 

Result : Integer feasible solution, (X, Y ) 

1 Y at ← 0 for each activity a ∈ A , time period t ∈ T ; 
2 X ω at ← 0 for each activity a ∈ A , time period t ∈ T , scenario 

ω ∈ �; 

3 while list SL is not empty do 

4 select the first activity, a ′ , in list SL and delete it from list 

SL ; 

5 t ′ ← � MS[ a ′ ] � ; 
6 while period t ′ ≤ T do 

7 Y a ′ t ′ ← 1 ; 

8 X ω 
a ′ t ← 0 for each time period t ∈ T , scenario ω ∈ �; 

9 for ω ∈ � do 

10 f eas _ scenario ← F ALSE; 

11 for t ∗ ∈ { max { 1 , t ′ − δ} , . . . , min { T , t ′ + δ}} do 

12 if assigning X ω 
a ′ t ∗ to 1 is precedence- and 

resource-feasible then 

13 X ω 
a ′ t ∗ ← 1 ; 

14 f eas _ scenario ← T RUE; 

15 break; 

16 end 

17 end 

18 if f eas _ scenario = F ALSE then 

19 break; 

20 end 

21 end 

22 if f eas _ scenario = F ALSE then 

23 Y a ′ t ′ ← 0 ; 

24 t ′ ← t ′ + 1 ; 

25 end 

26 end 

27 end 

28 return (X, Y ) ; 

https://doi.org/10.13039/501100004019
https://doi.org/10.13039/501100005304
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ppendix B 

roposition 1. A solution, (X, Y ) , generated by Algorithm 2 is a fea-

ible solution for problem (S ) . 

roof. We focus only on non-anticipativity constraints (7) and 

8) since precedence constraints (3) , resource constraints (4) , and 

ime-interval constraints (5) and (6) , are trivially satisfied by con- 

truction (see Algorithm 2 , lines 11 and 12). 

We will prove that solution (X, Y ) satisfies non-anticipativity 

onstraints (7) and (8) by induction. 

• Base case, activity at position 1 in list SL : The non- 

anticipativity constraints associated with activity a 1 = SL [1] 

hold since P a 1 = ∅ and, by construction, X ω a 1 t 
∗ = 1 for each 

scenario ω ∈ �, where t ∗ = max { 1 , � MS[ a 1 ] � − δ} . 
• Inductive step : Now, we prove that if the non-anticipativity 

constraints hold for each activity SL [1] , . . . , SL [ n ] , then the

non-anticipativity constraints hold for each activity SL [1] , . . . , 

SL [ n + 1] . 

We have to check whether the non-anticipativity constraints 

hold for activity a n +1 = SL [ n + 1] . First, we note that, by con-

struction, Algorithm 2 decides whether activity a n +1 is sched- 

uled or not. If a n +1 is scheduled, it is scheduled in all scenarios. 

If it is not scheduled, it is not scheduled in any scenario. There- 

fore, we have two cases to check: 

1. Activity a n +1 is not scheduled: In this case, the non- 

anticipativity constraints associated with activity a n +1 are 

trivially satisfied for each scenario pair { ω 1 , ω 2 } ⊆ �. 

2. Activity a n +1 is scheduled: Given any scenario pair 

{ ω 1 , ω 2 } ⊆ �, let t 1 and t 2 be the time periods at which

activity a n +1 starts in scenarios ω 1 and ω 2 , respectively. 

In other words, X 
ω 1 
a n +1 t 1 

= X 
ω 2 
a n +1 t 2 

= 1 . Moreover, let ˆ t = 

min { t 1 , t 2 } . By the beginning of time period 

ˆ t , scenarios

ω 1 and ω 2 are either differentiated or indistinguishable. If 

scenarios ω 1 and ω 2 are already differentiated by the be- 

ginning of time period 

ˆ t , then the non-anticipativity con- 

straints associated with activity a n +1 are trivially satisfied 

for scenario pair { ω 1 , ω 2 } . On the other hand, if scenar-

ios ω 1 and ω 2 are indistinguishable by the beginning of 

time period 

ˆ t , then we know that (i) exactly the same 

activities have been completed in both scenarios; (ii) for 

each of these completed activities, its corresponding dura- 

tion in scenarios ω 1 and ω 2 are the same; (iii) the start- 

ing times of all activities SL [1] , . . . , SL [ n ] in scenario ω 1 are

equal to the corresponding starting times in scenario ω 2 , 

since, by the inductive hypothesis, activities SL [1] , . . . , SL [ n ]

satisfy the non-anticipativity constraints; (iv) the activities 

in { SL [1] , . . . , SL [ n ] } that are not yet completed are under ex-

ecution the same amount of time in both scenarios ω 1 and 

ω 2 . By (i), (ii), and (iii), it follows that the activities in P a n +1 
,

which are contained in { SL [1] , . . . , SL [ n ] } , start and end at

exactly the same period in both scenarios ω 1 and ω 2 . More- 

over, by (iv), the resource availability at time period 

ˆ t is the 

same in both scenarios ω 1 and ω 2 . Thus, given that both 

time periods t 1 and t 2 correspond to the first time period 

at which it is feasible to start activity a n +1 in the respec- 

tive scenario (see Algorithm 2 , lines 11 and 12), we have 

that ˆ t = t 1 = t 2 . Thus, the non-anticipativity constraints as- 

sociated with activity a n +1 are satisfied for scenarios ω 1 and 

ω 2 . 

Therefore, solution (X, Y ) satisfies non-anticipativity constraints 

(7) and (8) . 
�
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