532 research outputs found

    How does smoking in the home affect children with asthma?

    Get PDF
    Children with asthma who are exposed to smoking in the home are likely to have more severe asthma symptoms, more asthma-related doctor visits (strength of recommendation [SOR]: B, a preponderance of evidence from heterogeneous cohort studies), and a poorer response to asthma therapy (SOR: B, 1 small cohort study) than unexposed children

    Vacuum-ultraviolet photoabsorption imaging system for laser plasma plume diagnostics

    Get PDF
    We describe a recently designed and constructed system based on a 1 m normal incidence vacuum monochromator with corrected (toroidal) optics that produces a wavelength tuneable and collimated vacuum-ultraviolet (VUV) (λ=30–100 nm) beam. The VUV continuum source is a laser-generated gold plasma. The primary function of the system is the measurement of time resolved “images” or spatial distributions of photoabsorption/photoionization in expanding laser plasma plumes. This is achieved by passing the beam through the sample of interest (in our case a second synchronised plasma) and recording the “footprint” of the attenuated beam on a charge coupled device. Using this VUV photoabsorption imaging or “shadowgraphy” technique we track and extract column density distributions in expanding plasma plumes. We can also measure the plume front velocity. We have characterized the system, particularly in relation to spectral and spatial resolution and the experimental results meet very well the expectations from ray tracing done at the design phase. We present first photoabsorption images and column density distributions of laser produced Ca plumes from the system

    Association of Pain Centralization and Patient‐Reported Pain in Active Rheumatoid Arthritis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156205/2/acr23994_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156205/1/acr23994.pd

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Trends in autoionization of Rydberg states converging to the 4s threshold in the Kr-Rbâș-SrÂČâș isoelectonic sequence: theory and experiment

    Get PDF
    We have measured the photoabsorption spectra of the Kr-like ions Rb+ and Sr2+ at photon energies corresponding to the excitation of 4s-np resonances using, the dual laser plasma photoabsorption technique. Dramatic changes in the line profiles, with increasing ionization and also proceeding along the Rydberg series of each ion, are observed and explained by the trends in 4s-transition amplitudes computed within a framework of configuration-interaction Pauli-Fock calculations. Total photoionization cross sections show very good agreement with relative absorption data extracted from the measured spectra

    Why don’t patients take their analgesics? A meta-ethnography assessing the perceptions of medication adherence in patients with osteoarthritis

    Get PDF
    Introduction/objectives: Whilst analgesics and medications have demonstrated efficacy for people with osteoarthritis, their effectiveness is dependent on adherence. This has previously been reported as particularly low in this population. The purpose of this meta-ethnography was to explore possible perceptions for this. Method: A systematic review of published and unpublished literature was undertaken. All qualitative studies assessing the attitudes or perceptions of people with osteoarthritis towards medication adherence were eligible. Study quality was assessed using the Critical Appraisal Skills Programme Qualitative tool. Analysis was undertaken using a meta-ethnography approach, distilling to a third order construct and developing a line of argument. Results: From 881 citations, five studies met the eligibility criteria. The meta-ethnography generated a model where medication adherence for people with osteoarthritis is perceived as a balance between the willingness or preference to take medications with the alterative being toleration of symptoms. Motivators to influence this ‘balance’ may fluctuate and change over time but include: severity of symptoms, education and understanding of osteoarthritis and current medications, or general health which may raise issues for poly-pharmacy as other medications are added or substituted into the patient’s formulary. Conclusions: Medicine adherence in people with osteoarthritis is complex, involving motivators which will fluctuate in impact on individuals at different points along the disease progression. Awareness of each motivator may better inform clinicians as to what education, support or change in prescription practice should be adopted to ensure that medicine adherence is individualised to better promote long-term behaviour change

    The OMERACT-OARSI Core Domain Set for Measurement in Clinical Trials of Hip and/or Knee Osteoarthritis

    Get PDF
    Objective: To update the 1997 OMERACT-OARSI (Outcome Measures in Rheumatology-Osteoarthritis Research Society International) core domain set for clinical trials in hip and/or knee osteoarthritis (OA). Methods: An initial review of the COMET database of core outcome sets (COS) was undertaken to identify all domains reported in previous COS including individuals with hip and/or knee OA. These were presented during 5 patient and health professionals/researcher meetings in 3 continents (Europe, Australasia, North America). A 3-round international Delphi survey was then undertaken among patients, healthcare professionals, researchers, and industry representatives to gain consensus on key domains to be included in a core domain set for hip and/or knee OA. Findings were presented and discussed in small groups at OMERACT 2018, where consensus was obtained in the final plenary. Results: Four previous COS were identified. Using these, and the patient and health professionals/researcher meetings, 50 potential domains formed the Delphi survey. There were 426 individuals from 25 different countries who contributed to the Delphi exercise. OMERACT 2018 delegates (n = 129) voted on candidate domains. Six domains gained agreement as mandatory to be measured and reported in all hip and/or knee OA clinical trials: pain, physical function, quality of life, and patient’s global assessment of the target joint, in addition to the mandated core domain of adverse events including mortality. Joint structure was agreed as mandatory in specific circumstances, i.e., depending on the intervention. Conclusion: The updated core domain set for hip and/or knee OA has been agreed upon. Work will commence to determine which outcome measurement instrument should be recommended to cover each core domain

    Modeling the drug release from hydrogel-based matrices

    Get PDF
    In this work the behavior of hydrogel-based matrices, the most widespread systems for oral controlled release of pharmaceuticals, has been mathematically described. In addition, the calculations of the model have been validated against a rich set of experimental data obtained working with tablets made of hydroxypropyl methylcellulose (a hydrogel) and theophylline (a model drug). The model takes into account water uptake, hydrogel swelling, drug release, and polymer erosion. The model was obtained as an improvement of a previous code, describing the diffusion in concentrated systems, and obtaining the erosion front (which is a moving boundary) from the polymer mass balance (in this way, the number of fitting parameters was also reduced by one). The proposed model was found able to describe all the observed phenomena, and then it can be considered a tool with predictive capabilities, useful in design and testing of new dosage systems based on hydrogels
    • 

    corecore