12 research outputs found

    Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse

    Get PDF
    It is now generally recognised that different modes of programmed cell death (PCD) are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death induced in CD34(+)/c-Kit(+)/P-glycoprotein(+)/MRP1(+) TF1 leukaemia progenitor cells is not mediated by apoptosis and/or autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells.TopInstitute pharma (The Netherlands)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Dutch Cancer SocietyErasmus MC Univ Med Ctr, Dept Gastroenterol & Hepatol, Rotterdam, NetherlandsUniv Amsterdam, Acad Med Ctr, Ctr Expt & Mol Med, NL-1105 AZ Amsterdam, NetherlandsUniv Estadual Campinas, Brazil UNICAMP, Dept Biochem, Inst Biol, São Paulo, BrazilFed Univ São Paulo UNIFESP, Dept Biochem, São Paulo, BrazilFed Univ São Paulo UNIFESP, Dept Cell Biol, São Paulo, BrazilUniv Grande Rio UNIGRANRIO, Heath Sci Sch, Multidisciplinary Lab Dent Res, Rio de Janeiro, BrazilNatl Inst Metrol Qual & Technol Inmetro, Biotechnol Lab, Bioengn Sect, Rio de Janeiro, BrazilUniv Campinas UNICAMP, Inst Chem, Biol Chem Lab, Rio de Janeiro, BrazilUniv Groningen, Univ Med Ctr Groningen, Dept Pediat Oncol, Beatrix Childrens Hosp, Groningen, NetherlandsFed Univ São Paulo UNIFESP, Dept Biochem, São Paulo, BrazilFed Univ São Paulo UNIFESP, Dept Cell Biol, São Paulo, BrazilDutch Cancer Society: EMCR 2010-4737Web of Scienc

    Comparative proteome and peptidome analysis of the cephalic fluid secreted by Arapaima gigas (Teleostei: Osteoglossidae) during and outside parental care

    Get PDF
    Parental investment in Arapaima gigas includes nest building and guarding, followed by a care provision when a cephalic fluid is released from the parents’ head to the offspring. This fluid has presumably important functions for the offspring but so far its composition has not been characterised. In this study the proteome and peptidome of the cephalic secretion was studied in parental and non-parental fish using capillary electrophoresis coupled to mass spectrometry (CE-MS) and GeLC-MS/MS analyses. Multiple comparisons revealed 28 peptides were significantly different between males and parental males (PC-males), 126 between females and parental females (PC-females), 51 between males and females and 9 between PC-males and PC-females. Identification revealed peptides were produced in the inner ear (pcdh15b), eyes (tetraspanin and ppp2r3a), central nervous system (otud4, ribeye a, tjp1b and syn1) among others. A total of 422 proteins were also identified and gene ontology analysis revealed 28 secreted extracellular proteins. From these, 2 hormones (prolactin and stanniocalcin) and 12 proteins associated to immunological processes (serotransferrin, α-1-antitrypsin homolog, apolipoprotein A-I, and others) were identified. This study provides novel biochemical data on the lateral line fluid which will enable future hypotheses-driven experiments to better understand the physiological roles of the lateral line in chemical communication

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Induction of cell death by violacein is associated with an ultrastructurally unique programme of cellular demise.

    No full text
    <p>(A) Using transmission electron microscopy, the ultrastructural effects of violacein-induced cell death were characterised at different time points following application of the indole derivative. No apparent morphological evidence for induction of either autophagy, apoptosis, necroptosis or pyroptosis is obtained, as for instance the integrity of the mitochondria and plasma membrane is maintained until the final stages of cellular suicide and no increase in the number of autophagosomes is seen. Highly distinctive of violacein-induced cell death, however, is the endoplasmic reticulum and Golgi linearization and at later time points nuclear mottening. (B) High magnification examples of endoplasmic reticulum and Golgi linearization, characteristic for violacein effects 20 hrs following application of the chemopreventive indole.</p

    Induction of cell death by violacein in intrinsically resistant TF1 myeloerythroid leukaemia cells.

    No full text
    <p>(A) TF1 cells are unusually resistant with respect to PCD. Cells were exposed for 24 hrs to FasL, TNFα and mitoxantrone. (B) TF1 cells were exposed to various concentrations of violacein (X-axis) in the presence of 10% FCS and analysed for cellular survival (as assayed by the capacity of cellular cultures to reduce MTT; Y-axis) 24 hrs, 48 hrs and 72 hrs later as indicated. (C) Analysis of cellular DNA content by FACS shows that violacein-induced TF cell death is accompanied by breakdown of the genome. Each value represents the mean ± SEM of three independent experiments.</p
    corecore