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Abstract

It is now generally recognised that different modes of programmed cell death (PCD) are intimately linked to the cancerous
process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different
between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is
crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity
to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects
of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death
induced in CD34+/c-Kit+/P-glycoprotein+/MRP1+ TF1 leukaemia progenitor cells is not mediated by apoptosis and/or
autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the
working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions
of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and
activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi
apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming,
overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells.
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Introduction

The physiology of metazoan organisms requires mechanisms

that direct cellular death in a controlled fashion, a process

collectively denominated as programmed cell death (PCD) [1].

During embryology and further development to sexual maturity,

various structures like the pro-nephros and mesonephros have only

transient functionality and are orderly disposed off when no longer

necessary. Analogously, development of the immune system as

well as termination of ongoing host-defence responses require the

controlled elimination of a large number of effector cells [2].

Furthermore, aberrant compartment size regulation is implicated

in many serious pathologies (most dramatically, maybe, in cancer),

and prominently involves defects in PCD [3].

Cell-intrinsic programmed suicide has been functionally classi-

fied by the Committee on Cell Death 2012 as consisting of, so far,

13 separate molecular modes of cell death: Anoikis, autophagic

cell death, caspase-dependent intrinsic apoptosis, caspase-inde-

pendent intrinsic apoptosis, cornification, entosis, extrinsic apop-

tosis by death receptors, extrinsic apoptosis by dependence

receptors, mitotic catastrophe, necroptosis, netosis, parthanatos

and pyroptosis which are distinguished based on biochemical

features which are nicely reviewed in [4] and by the Committee on

Cell Death 2012 [4,5].

It is now generally recognised that different modes of PCD are

intimately linked to the cancerous process, as apoptotic cell death

is an important anti-neoplastic protective mechanism upon

improper induction of cellular proliferation, and is also involved

in cancer cell clearance by immunosurveillance, chemotherapy or

radiotherapy [6]. Autophagy, which counteracts other forms of

PCD including apoptosis, may play a role in the escape from
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chemotherapy by transformed cells [7]. Necroptosis and pyrop-

tosis are important for inducing cell death during inflammatory

reactions, thereby preventing inflammation-associated cancer [4].

In addition, chemoprevention of cancer is also thought to be

linked to PCD, inducing cellular suicide in pre-neoplastic lesions

and thus halting development of full-blown cancer [8]. The mode

of PCD involved in cancer chemoprevention is much less clear and

may be different between types of chemopreventive agents and

tumour cell types involved. Chemoprevention of colorectal cancer

by NSAIDS, for instance, is most often linked to a pro-apoptotic

response in the transformed compartment [9], but the robust

chemoprevention of the same cancer type by the use of statins is

linked to necroptosis [10]. Moreover, we have recently presented

evidence that chemoprevention induced by apigenin is linked to an

autophagic response [7]. Generally speaking however the mode of

PCD by many important cancer chemopreventive agents remains

poorly characterised, prompting further research in this area.

One such chemopreventive compound is Violacein [3-(1,2-

dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ilydene)-

1,3-dihydro-2H-indol-2-one], a purple-colored pigment produced

by Chromobacterium violaceum, a bacterium present in certain parts of

the Amazon river basin in Brazil [11]. Violacein shares an

interesting antitumor activity with various other naturally occur-

ring indolones [12]. Violacein has previously been shown to

induce apoptosis of HL60 leukaemia cells. Interestingly, TF1 cells

which are less differentiated than HL60 seems to be more resistant

to violacein-induced apoptosis [13]. However, violacein is still able

to induce death in these cells via an alternative mechanism.

In an effort to obtain further insight into the molecular

mechanisms of violacein-mediated anti-proliferative responses,

we studied the effect of this compound on TF1 leukaemia cells. We

observed induction of cellular suicide in these leukaemia cells, and

subsequent morphological investigation revealed a mode of cell

death involving endoplasmic reticulum and Golgi linearization

and ‘horseshoe-shaped’ nucleus. To investigate the mechanism of

violacein-induced death in TF1 cells, we performed kinome

profiling using peptide arrays to yield comprehensive descriptions

of cellular kinase activities. Kinome profiling revealed a calpain

based mechanism leading to cellular demise. Thus, our findings

demonstrate that this non-canonic mechanism of cell death

induced by violacein might explain its strong antileukaemic

properties even in cell lines which are less sensitive to classical

induction of cell death.

Materials and Methods

Reagents
Polyclonal antibodies against ERK1/2 (Thr202/Tyr204),

MAPAPK2 (Thr222), p38 (Thr180/Tyr182), mTOR (Ser2448),

PKB, phospho-PDK1 (Ser241), phospho-GSK3b (Ser9), LC3B

and Beclin1, were purchased from Cell Signaling Technology

(Beverly, MA). Secondary anti-rabbit and anti-mouse peroxidase-

conjugated antibodies were also obtained from Cell Signaling

Technology (Beverly, MA). Antibodies against anti-MAP LC3 and

cleaved-PARP and secondary anti-goat antibodies were purchased

from Santa Cruz (St. Louis, MO). Anti-Fas receptor (Fas) and anti-

Fas ligand (FasL) were from Immunotech (Marseille, France).

TNFa was obtained from R&D Systems. Violacein (3-(1,2-

dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ilydene)-

1,3-dihydro-2H-indol-2-one) was extracted and purified as previ-

ously described [14].

Cell culture and Treatments
TF1 cell line was purchased from American Type Culture

Collection (ATCC, Rockville, MD). Cells were routinely grown in

RPMI 1640 culture medium (Gibco) containing 10% fetal bovine

serum, 2 mM L-glutamine, 5 ng/ml GM-CSF, 100 units/mL

penicillin and 100 mg/mL streptomycin at 37uC in a humidified

incubator with 5% CO2 in air.

Cell viability
Cell viability was assessed by trypan blue dye exclusion and

MTT reduction assays as previously reported [10,15].

Cell Cycle Analysis
TF1 cells were cultured for 24 hours at a density of 26104 cells/

ml in serum free RPMI. After 24 h of serum starvation cells were

treated with violacein for 24 h, and subsequently cells were

washed with PBS and resuspended in 200 ml of a sodium citrate

dihydrate (1 g/L) solution, containing 50 ml Ribonuclease A

(10 mg/ml; Fermentas), propidium iodide 0.02 mg/ml (Sigma)

and Triton X-100 (Sigma) 0.1%. Next, the cells were incubated in

the dark for 60 min at room temperature. The analysis was

performed in a FACSCalibur flow cytometer (BD Biosciences, San

Jose, CA, USA). The cells were analyzed in low speed and at least

10,000 events were analyzed per sample. The DNA content was

evaluated using a FL2 detector in a linear scale. To eliminate cell

aggregates, the cell population to be analyzed was selected from a

bivariate histogram showing the area (FL2A) versus the width

(FL2W) of the signal FL2. The analysis of cell percentage in the

different phases of the cell cycle (G0/G1, S, and G2/M) was

performed using the ModFit LT software (BD Biosciences, San

Jose, CA, USA).

Western blotting
Cells (36107) were lysed in 200 mL cell lysis buffer (50 mM Tris

[tris(hydroxymethyl)aminomethane]–HCl [pH 7.4], 1% Tween

20, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EGTA

(ethylene glycol tetraacetic acid), 1 mM O-Vanadate, 1 mM NaF,

and protease inhibitors [1 mg/mL aprotinin, 10 mg/mL leupeptin,

and 1 mM 4-(2-amino-ethyl)-benzolsulfonyl-fluoride-hydrochlo-

ride]) for 2 h on ice. Protein extracts were cleared by centrifuga-

tion, and the protein concentration was determined using Lowry.

An equal volume of 26 sodium dodecyl sulfide (SDS) gel loading

buffer (100 mM Tris-HCl [pH 6.8], 200 mM dithiothreitol

[DTT], 4% SDS, 0.1% bromophenol blue and 20% glycerol)

was added and the samples were boiled for 10 minutes. Cell

extracts, corresponding to 36105 cells, were resolved by SDS-

polyacrylamide gel (12%) electrophoresis (PAGE) and transferred

to polyvinylidene difluoride (PVDF) membranes. Membranes were

blocked in 1% fat-free dried milk or bovine serum albumin (2%) in

Tris-buffered saline (TBS)–Tween 20 (0.05%) and incubated

overnight at 4uC with appropriate primary antibody at 1:1000

dilution. After washing in TBS-Tween 20 (0.05%), membranes

were incubated with anti-rabbit, anti-goat and anti-mouse

horseradish peroxidase-conjugated secondary antibodies at

1:2000 dilutions (in all Western blotting assays) in blocking buffer

for 1 h. Detection was performed by using enhanced chemilumi-

nescence (ECL).

Transmission electron microscopy
After incubated with violacein, the cells were fixed with 2.0%

phosphate-buffered glutaraldehyde. The cells were then postfixed

in 1% phosphate-buffered OsO4, and embedded in Spurr’s resin.

Thin sections (0.12 mm) were cut, double stained with UO2(CH3-
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COO)2 (uranyl acetate) and Pb3C12H10O14 (lead citrate), and

visualized with a Philips TECNA10 transmission electron micro-

scope (TEM). Fifty cells from randomly chosen TEM fields were

analyzed for each treatment or control [16].

Kinomic array
Kinome arrays were performed essentially as described before.

[17–19]. In short, cells were washed in PBS and lysed in a non-

denaturing complete lysis buffer. The peptide arrays (Pepscan,

Lelystad, The Netherlands), containing up to 1024 different kinase

substrates in triplicate, were incubated with the cell lysates for 2 h

in a humidified incubator at 37uC. Subsequently, the arrays were

washed in 2 M NaCl, 1% Triton-X-100, PBS, 0.1% Tween and

water; thereafter slides were exposed to a phospho-imaging screen

for 24–72 h and scanned on a phospho-imager (Fuji, Stanford,

USA). The level of incorporated radioactivity, which reflects the

extent of phosphorylation, was quantified with specific array

software (EisenLab ScanAlyze, version 2.50). Datasets from chips

were then analyzed statistically using PepMatrix, as described by

Milani et al. 2010. Basically, spot replications were scrutinized for

consistency using two indexes: one being the standard deviatio-

n:average (SD/A) ratio and the other being the ratio between the

average and the median (A/M) of all three replications for each

chip. Parameters applied to the indexes were an SD/A,50% and

80%,A/M,120%. The fold change in phosphorylation between

control and treated cells was assessed using Student’s t-test, with

P,0.05 indicating significance. Distribution of shared events in

TF1 cells in response to violacein treatment was visualized using

Venny (Oliveros, J.C. (2007) VENNY http://bioinfogp.cnb.csic.

es/tools/venny/index.html) and heat map was constructed in R

2.12.0 (R Foundation for Statistical Computing, Vienna, Austria)

using heatmap.2.

Statistical evaluation
The Western blots represent 3 independent experiments. Cell

viability data were expressed as the means 6 standard deviation of

3 independent experiments carried out in triplicates. Data from

each assay were analyzed statistically by ANOVA. Multiple

comparisons among group mean differences were checked with

the Tukey test. Differences were considered significant when the p

value was less than 0.05.

Results

Violacein displays antiproliferative action on TF1
leukaemia cells

CD34+/c-Kit+/P-glycoprotein+/MRP1+ TF1 leukaemia pro-

genitor cells have been reported to be unusually resistant against

PCD [20]. In apparent agreement, we observed that neither

stimulation with high concentrations of Fas ligand, tumour

necrosis factor (TNF)a or strong chemotherapeutic agents like

mitoxatrone for 24 hours affected TF1 survival to a large degree as

assessed by MTT reduction (figure 1a). Importantly, however,

these cells turned out to be sensitive to violacein, with clear effects

on MTT reduction already being evident in the low mM range

after 24 h and 2 mM violacein was incompatible with TF1 cell

survival after 72 h (figure 1b). Subsequent analysis showed that

the cell death by violacein is not accompanied by loss of trypan

blue exclusion or relevant numbers of annexin V/PI-positive cells

(control 9.5%60.76 and Violacein 2 mM 15.6%60.5) (not shown);

suggesting that the effect of violacein is not due to direct toxic

necrosis or classical apoptosis but to a specific cell death

programme. In addition, analysis of TF1 cell DNA content shows

that violacein-dependent cell death was accompanied by destruc-

tion of the genome (figure 1c). Previously, we have shown that

violacein induces apoptosis of HL60 leukaemia [23]. However,

due to the fact that TF1 cells are quite resistant to traditional cell

death inductors, such as mitoxantrone and TNFa and violacein

managed to overcome this phenotype, we next examined the

molecular mechanism by which violacein promotes TF1 cell

death.

Violacein does not induce cellular suicide through the
canonical PCD modes

PCD can progress through different types of molecular system

which will ultimately cause cell death [4]. However, a dominant

PCD mechanism was not observed in TF1 cells treated with

violacein. Caspase-dependent apoptosis is excluded since inhibi-

tors of pro-apoptotic caspases did not affect violacein-dependent

cell death (figure 2a). Also, the known class III PI3K inhibitor, 3-

methyladenine (3-MA, 5 mM), which inhibits the formation of

autophagosomes [21], has no effect on violacein-induced cell

death (figure 2b). Furthermore, the apparent absence of a

necrotic effect of violacein, as assayed by the ethidium bromide/

acridine orange assay (figure 2c), is at bay with a major role for

violacein on TF1 cell survival. Thus, death of TF1 cells following

application of violacein seems not to be mediated by one of the

canonical PCD modalities. In apparent agreement, violacein

induced neither increased expression of Beclin-1 nor massive

formation of the autophagosome associated form of LC3-B

(figure 2d), further excluding an important role of autophagic

cell death in violacein-mediated cell death. Nevertheless, violacein

treatment slightly increased the levels of cleaved PARP

(figure 2d).

Ultrastructural characterisation of violacein effects in TF1
cells reveals endoplasmic reticulum and Golgi
linearization

To obtain further insight into the mechanisms underlying TF1

cell death following violacein treatment, the ultrastructure of these

cells was studied using transmission electron microscopy

(figure 3a). Plasma membrane integrity was maintained until

almost the final stages of cellular suicide and no increase in the

number of autophagosomes was observed. In addition, no

apparent morphological evidence for induction of autophagic cell

death (as the vesicles observed do not present double membranes

which is characteristic of this type of cell death), apoptosis or

necroptosis was observed. However, violacein-induced cell death

was followed by endoplasmic reticulum and Golgi linearization

(see high power magnification pictures in figure 3b), and ,at later

time frame, the appearance of ‘horseshoe-shaped’ nuclei, initiating

the last phase before cellular demise, becomes prominent.

Violacein caused a dynamic reprogramming in TF1 cells
kinases assessed by Western Blot

Due to the strong inhibitory effect of violacein on the TF1 cell

proliferation rate, the modulation status of some kinases was

examined by western blot. PDK and AKT presented higher

phosphorylation levels at positive regulatory sites, which indicated

that violacein promotes activation of both enzymes. Src kinase was

less active, since the inhibitory site at tyrosine residue 527 was

phosphorylated. Activation of AKT, an important pro-survival

kinase, could explain the absence of a strong effect of violacein on

apoptotic and autophagic markers. On the other hand, the

negative modulation of Src kinase might be, at least in part,

responsible for the antiproliferative action of this compound

(figure 4a).

Kinome Reprogramming and Cell Death by Violacein
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mTOR kinase was not significantly affected by violacein. In

relation to GSK, MAPKAP2, p38 and p42/44 kinases, we

observed a transient influence of violacein along the evaluated

time frame (figure 4a). These results indicate that the violacein-

induced cell death is potentially triggered by oxidative stress as

MAP kinases in these circumstances present themselves as pro-cell

death signals [22]. Indeed, this is in line with the structures

observed by EM in which we clearly observed ER and Golgi

linearization probably caused by violacein-induced stress. Also, the

strong activation of death associated protein kinase, which has

been associated with PCD related to interferon-c withdrawal but is

also known to inhibit apoptosis and whose role in PCD thus

remains obscure [23], is an obvious candidate mediator in

violacein action. Particularly considering that this kinase seems

to facilitate the interplay of different cell death subroutines [24]. In

addition, the calpain L1 large subunit is significantly less

phosphorylated in violacein-treated cells, an event associated with

deactivation of this cysteine protease [25]. Importantly, defects in

calpain functionality are associated with a variety of deficiencies,

including lethality, dystrophy, and tumorigenesis, suggesting that a

calpain-like system could be important to induce programmed cell

death in these cells [26]. Hence, we investigated the capacity of

calpeptin (an inhibitor of calpain enzymatic activity [27]) to mimic

violacein effects on cell death and indeed we observed that such

inhibition is almost equipotent to violacein in inducing cell death

in TF1 cells (figure 4b), indicating that the calpain system also

may play a role in PCD induced by violacein.

Violacein caused a dynamic reprogramming in TF1 cells
kinases assessed by Kinome Profiling

Absence of a priori assumptions of the biochemical mechanisms

that mediate the morphological effects of PCD induced by

violacein prompted us to look for techniques that allow the

generation of unbiased and comprehensive descriptions of cellular

signalling. One such technique is kinome profiling using peptide

arrays. We have used this methodology successfully to unravel the

signalling mechanisms mediating, amongst others, chemopreven-

tion by coxibs in colorectal cancer [28] or the non-genomic

mechanisms employed by the glucocorticoid receptor [29] to limit

white blood compartment expansion. For the present study, we

generated kinome profiles using peptide arrays by incubating TF1

cell lysates obtained from cultures either untreated or subjected to

2 mM Violacein treatments for respectively 30 min, 16 h and

24 h. The arrays incorporated substantial amounts of radioactivity

and the technical quality of the profiles was good as the average

Pearson product moment obtained for the technical replicas

ranged from 0.78 to 0.90 (Table S1). Application of violacein to

cells caused an important and dynamic kinome reprogramming,

which progresses over time (figure 4c). This is perhaps better

visualized in figure 4d which shows a heat map built from the

significantly altered kinases in TF1 cells lysates in response to

violacein. Violacein-treated cells present a remarkably different

profile in later time points (16 and 24 hrs) which are more alike

compared to control or violacein treatment for 30 min (figure 4d).

In figure 4e a Venn diagram depicting the distribution of up and

Figure 1. Induction of cell death by violacein in intrinsically resistant TF1 myeloerythroid leukaemia cells. (A) TF1 cells are unusually
resistant with respect to PCD. Cells were exposed for 24 hrs to FasL, TNFa and mitoxantrone. (B) TF1 cells were exposed to various concentrations of
violacein (X-axis) in the presence of 10% FCS and analysed for cellular survival (as assayed by the capacity of cellular cultures to reduce MTT; Y-axis)
24 hrs, 48 hrs and 72 hrs later as indicated. (C) Analysis of cellular DNA content by FACS shows that violacein-induced TF cell death is accompanied
by breakdown of the genome. Each value represents the mean 6 SEM of three independent experiments.
doi:10.1371/journal.pone.0045362.g001
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downregulated kinases at different time points is shown. Densito-

metric values for all substrates and the statistical significance of the

results obtained compared to untreated cells for all time points are

given in Table S2. In figure 4f graphs presenting a correlation

between fold change and p-value for each time point compared to

control are presented. Analysis of these profiles, however, produces

little evidence for an involvement of canonical PCD pathways in

violacein-induced effects in TF1 cells. As it is also shown in

figure 4f, the PKB/mTOR pathway, whose activation is

associated with inhibition of both apoptotic and autophagic

PCD modalities [30], is not significantly affected by violacein

treatment.

Kinome profiling brought out some kinases which are

differently modulated along the treatment of TF1 cells with

violacein. Importantly, in agreement with viability and cell cycle

analysis, some kinases that favour cell cycle progression and cell

survival, such as CDK, Rock, Axl and AurkA, were negatively

modulated by violacein, after 16 and 24 h. On the other hand, a

huge set of kinases appeared more active in treated TF1 cells.

Among those, some have not been reported as mediators of cell

death or reticulum stress. Importantly, violacein modulated two

kinases that have been linked with reticulum stress and cell death

via apoptosis and autophagy. Violacein caused an expressive

activation of PKA, as observed by the higher phosphorylation level

of its substrate CREB1 observed on the peptide chip. In addition,

we detected an increase of autophosphorylation of DAPK1 at its

inhibitory site by violacein treatment.

Discussion

Violacein and related indolic compounds attract attention

because of their presumed chemopreventive action, originally

discovered from epidemiological studies in the Amazon basin [31].

Although clearly highly biologically active [13,32], the mechanism

by which violacein might interfere with tumor cells remains

partially unclear. Nevertheless, it has become evident that despite

the absence of induction of cell death in untransformed cells or low

in vivo toxicity of the compound in humans and experimental

animals [32–33], it is strongly cytotoxic towards a number of

transformed cell types. Specifically in relation to leukaemia, we

have shown earlier that this pigment induces apoptosis of human

chronic myeloid leukaemia cells (HL60) by intrinsic and extrinsic

pathways. In order to provide more information about the

potential antileukemic action of violacein, in the present study we

examined the effect of violacein on a chemoresistant CD34+/c-

Kit+/P-glycoprotein+/MRP1+ TF1 leukaemia progenitor cell line.

Our findings revealed that violacein was able to bypass the natural

resistance of TF1 cells, mainly through activating kinases that

promote reticulum stress. Interestingly, some kinases that are

involved in cell death via apoptosis and autophagy were inhibited

after violacein treatment. The induction of PARP cleavage and the

resulting breakdown of the cellular genome as well as the absence

of trypan blue incorporation during violacein-induced cell death

indicate that violacein acts through a specific cellular suicide

program. All currently described forms of cell death seem to a

Figure 2. Induction of cell death by violacein does not progress through canonical modes of programmed cell death. (A) Cell death
induced in TF1 cells by a 24 hrs treatment with 2 mM of violacein is not sensitive to inhibitors of pro-apoptotic caspases. (B) The autophagosome
inhibitor 3-methyladenine does not impair violacein-induced cellular suicide in TF1 cells. (C) Apparent absence of a necrotic effect of violacein in TF1
cells, as assayed by the ethidium bromide/acridine orange assay. (D) Western blot analysis of beclin-1 and autophagy-specific LC3B isoform levels
excludes a major role of autophagy in violacein effects in TF1 cells. Nevertheless, violacein clearly increases levels of cleaved PARP and thus cell death
induction by violacein represents a mode of PCD.
doi:10.1371/journal.pone.0045362.g002
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certain extent to be inhibitory to other forms of PCD [4] and the

form induced by violacein does not appear to be an exception.

Studies of cellular biochemistry, ultrastructural morphology and

inhibitors of apoptosis, autophagy and pyroptosis indicate that

violacein acts through a molecular mechanism distinct from these

known manifestations of cellular death. In apparent agreement,

detailed ultrastructural characterisation of violacein effects on

cellular morphology revealed a unique cascade of events involving

first endoplasmic reticulum and Golgi linearization and at later

time points the nuclei assume a ‘horseshoe shape’. Biochemically,

these morphological events were accompanied by highly distinc-

tive effects on the kinome and concomitant downregulation of the

Calpain cysteine protease system. Despite kinome profiling

allowed us to elect a set of kinases that was differentially affected

by violacein, in this section we will point out those that gave us

support to explain the fate of TF1 cells towards this pigment.

Violacein effects are accompanied by strong activation of

survival and anti-autophagic/anti-apoptotic signalling pathways

through the AKT and PDK activation and inhibition of DAPK1,

which counteracts both apoptosis as well as autophagic cell death.

Activation of AKT signalling induced by violacein might be due to

reticulum stress, as it has been previously reported that AKT driven

signalling is enhanced under reticulum stress. Some reports pointed out

that endoplasmic reticulum and Golgi apparatus can positively

modulate both pro-survival (mainly related to protection responses)

mechanisms as well as cell suicide when the stress stimuli threshold is

exceeded [34]. DAPK1 has been reported to be an important mediator

of apoptosis and autophagy [35,36] and, since it was observed that

violacein caused an expressive inhibition of this kinase, this fact can

explain, at least in part, the absence of identification of typical markers

of apoptosis or autophagy in TF1 cells treated with violacein.

The exact biochemical details by which violacein-induced cell

death progresses evidently require further analysis, but it is

interesting to see that inhibition of calpain mimics important

aspects of the effect observed in response to violacein, suggesting

that inhibition of calpain enzymatic activity may be an important

factor in this process. In apparent agreement, genetic ablation of

calpain enzymatic activity strongly decreases the propensity to

tumorigenesis in experimental animals [37].

In general, the data presented here provide basis to explain the

broad action of violacein as antitumoral agent. It is important to

emphasize that violacein was able to induce death of resistant

leukaemia cells, and kinome determination was a valuable strategy

to select crucial kinases for this mechanism.

Supporting Information

Table S1 Technical quality of kinome profiling. Cells were lysed

and incubated on peptide arrays (1024 spots from which represent

974 bona fide kinase consensus substrates and 50 technical

controls) in the presence of 33P-c-ATP. Subsequently for each

substrate phosphorylation was determined using a phosphoimager,

yielding a dataset. Three datasets of each condition were obtained

by parallel incubation of peptide array, yielding dataset 1 through

3 for each condition (technical replicates). The results depicted in

the table represent the Pearson moment between these technical

replicates and was always in excess of 0.78.

(DOC)

Table S2 Results of kinome profiling of TF1 cells exposed for

30 min, 16 hrs or 24 hrs to 2 mM violacein compared to control.

Following violacein incubation, cells were lysed and incubated on

peptide arrays (1024 spots from which represent 974 bona fide

kinase consensus substrates and 50 technical controls) in the

presence of 33P-c-ATP. Subsequently for each substrate phos-

phorylation was determined using a phosphoimager, yielding a

dataset. Tables show peptide motifs employed by the correspond-

ing source protein from which the peptide motif was obtained, the

average phosphorylation obtained from three datasets and its

standard deviation. For those peptides of which the phosphory-

lation following violacein treatment was statistically significant

different from control cultures, the P value is given as well.

(XLS)
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Figure 3. Induction of cell death by violacein is associated with
an ultrastructurally unique programme of cellular demise. (A)
Using transmission electron microscopy, the ultrastructural effects of
violacein-induced cell death were characterised at different time points
following application of the indole derivative. No apparent morpho-
logical evidence for induction of either autophagy, apoptosis,
necroptosis or pyroptosis is obtained, as for instance the integrity of
the mitochondria and plasma membrane is maintained until the final
stages of cellular suicide and no increase in the number of
autophagosomes is seen. Highly distinctive of violacein-induced cell
death, however, is the endoplasmic reticulum and Golgi linearization
and at later time points nuclear mottening. (B) High magnification
examples of endoplasmic reticulum and Golgi linearization, character-
istic for violacein effects 20 hrs following application of the chemopre-
ventive indole.
doi:10.1371/journal.pone.0045362.g003
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Figure 4. Induction of cell death by violacein is associated with a major rearrangement of cellular biochemistry. (A) The PKB-mediated
survival cassette is not inhibited by 2 mM violacein treatment in TF1 cells. Although Western Blot analysis of signalling intermediate phosphorylation
does not perfectly correlate with the kinase enzymatic activity, it is obvious that also phosphorylation status analysis does not provide evidence for
diminished survival signalling following TF1 cell stimulation. Note that GSK3b activity is negatively regulated by its PKB-mediated phosphorylation (B)
Viability of TF1 cells was evaluated in the presence of Calpeptin (50 mM) or after violacein (2 mM) treatment. (C) Plotting correlation between
phosphorylation of specific peptide substrates shows that 30 minutes following violacein treatment only minor changes in the cellular kinome are
observed. More long-term treatment, however, causes major remodelling of the kinome. The value in the graph gives the Pearson product. (D)
Heatmap of significantly altered kinases in TF1 cells in response to violacein treatment. (E) Venn diagram depicting the distribution of phosphorylated
spots at different time points (30 min is depicted in blue, 16 hrs in yellow and 24 hrs in green). (F) Comparison between statistically significant
phosphorylated spots in TF1 cells treated with 2 mM violacein for 0 hrs with cells treated for 16 hrs and 24 hrs. This graph shows the correlation
between fold change and p-values for the statistically significant phosphorylated spots at the different time points of treatment with violacein.
doi:10.1371/journal.pone.0045362.g004
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