10 research outputs found

    Planetary Construction Zones in Occultation: Discovery of an Extrasolar Ring System Transiting a Young Sun-like Star and Future Prospects for Detecting Eclipses by Circumsecondary and Circumplanetary Disks

    Get PDF
    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of ~10^4 young (~10 Myr old) post-accretion pre-MS stars monitored for ~10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low mass companion stars. We present photometric and spectroscopic data for a pre-MS K5 star (1SWASP J140747.93-394542.6), a newly discovered ~0.9 Msun member of the ~16 Myr-old Upper Cen-Lup subgroup of Sco-Cen at a kinematic distance of 128 pc. SuperWASP and ASAS light curves for this star show a remarkably long, deep, and complex eclipse event centered on 29 April 2007. At least 5 multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of ~1 mag eclipses symmetrically occurring +-12 days and +-26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a ~54 day period in 2007, and a strong >1 mag dimming event occurred over a ~12 day span. We place a firm lower limit on the period of 850 days (i.e. the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km/s). The shape of the light curve is similar to the lop-sided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, girded by at least 3 dusty rings of lower optical depth. Between these rings are at least two annuli of near-zero optical depth (i.e. gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the estimated total ring mass is ~8-0.4 Mmoon (if the rings have optical opacity similar to Saturn's rings), and the edge of the outermost detected ring has orbital radius ~0.4-0.09 AU.Comment: Astronomical Journal, in press, 13 figure

    Qatar-2: A K dwarf orbited by a transiting hot Jupiter and a more massive companion in an outer orbit

    Get PDF
    We report the discovery and initial characterization of Qatar-2b, a hot Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short period, P_ b = 1.34 days. The mass and radius of Qatar-2b are M_p = 2.49 M_j and R_p = 1.14 R_j, respectively. Radial-velocity monitoring of Qatar-2 over a span of 153 days revealed the presence of a second companion in an outer orbit. The Systemic Console yielded plausible orbits for the outer companion, with periods on the order of a year and a companion mass of at least several M_j. Thus Qatar-2 joins the short but growing list of systems with a transiting hot Jupiter and an outer companion with a much longer period. This system architecture is in sharp contrast to that found by Kepler for multi-transiting systems, which are dominated by objects smaller than Neptune, usually with tightly spaced orbits that must be nearly coplanar

    An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b

    No full text
    The 'hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born1, 2, or by an alternative mechanism such as planet–planet scattering3. The hot Jupiters closest to their parent stars, at orbital distances of only 0.02 astronomical units, have strong tidal interactions4, 5, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory6, 7. Here we report the discovery of planet WASP-18b with an orbital period of 0.94 days and a mass of ten Jupiter masses (10 MJup), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 106, as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System

    Qatar-2:a K dwarf orbited by a transiting hot Jupiter and a more massive companion in an outer orbit

    No full text
    We report the discovery and initial characterization of Qatar-2b, a hot Jupiter transiting a V = 13.3 mag K dwarf in a circular orbit with a short period, P b = 1.34 days. The mass and radius of Qatar-2b are M P = 2.49 M J and R P = 1.14 R J, respectively. Radial-velocity monitoring of Qatar-2 over a span of 153 days revealed the presence of a second companion in an outer orbit. The Systemic Console yielded plausible orbits for the outer companion, with periods on the order of a year and a companion mass of at least several M J. Thus, Qatar-2 joins the short but growing list of systems with a transiting hot Jupiter and an outer companion with a much longer period. This system architecture is in sharp contrast to that found by Kepler for multi-transiting systems, which are dominated by objects smaller than Neptune, usually with tightly spaced orbits that must be nearly coplanar.</p
    corecore