21 research outputs found

    Mixed Candida albicans strain populations in colonized and infected mucosal tissues

    Get PDF
    Multilocus sequence typing of six Candida albicans colonies from primary isolation plates revealed instances of colony-to-colony microvariation and carriage of two strain types in single oropharyngeal and vaginal samples. Higher rates of colony variation in commensal samples suggest selection of types from mixed populations either in the shift to pathogenicity or the response to antifungal treatment

    Role of the Candida albicans MNN1 gene family in cell wall structure and virulence

    Get PDF
    Background The Candida albicans cell wall is the first point of contact with the host, and its outer surface is heavily enriched in mannoproteins modified through the addition of N- and O-mannan. Previous work, using mutants with gross defects in glycosylation, has clearly identified the importance of mannan in the host-pathogen interaction, immune recognition and virulence. Here we report the first analysis of the MNN1 gene family, which contains six members predicted to act as α-1,3 mannosyltransferases in the terminal stages of glycosylation. Findings We generated single null mutants in all members of the C. albicans MNN1 gene family, and disruption of MNN14 led to both in vitro and in vivo defects. Null mutants in other members of the family demonstrated no phenotypic defects, suggesting that these members may display functional redundancy. The mnn14Δ null mutant displayed hypersensitivity to agents associated with cell wall and glycosylation defects, suggesting an altered cell wall structure. However, no gross changes in cell wall composition or N-glycosylation were identified in this mutant, although an extension of phosphomannan chain length was apparent. Although the cell wall defects associated with the mnn14Δ mutant were subtle, this mutant displayed a severe attenuation of virulence in a murine infection model. Conclusion Mnn14 plays a distinct role from other members of the MNN1 family, demonstrating that specific N-glycan outer chain epitopes are required in the host-pathogen interaction and virulence

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    Mechanisms of hypha orientation of fungi

    Get PDF
    Hypha orientation is an essential aspect of polarised growth and the morphogenesis, spatial ecology and pathogenesis of fungi. The ability to re-orient tip growth in response to environmental cues is critical for colony ramification, the penetration of diverse host tissues and the formation of mating structures. Recent studies have begun to describe the molecular machinery regulating hypha orientation. Calcium signalling, the polarisome Bud1-GTPase module and the Tea cell-end marker proteins of the microtubule cytoskeleton, along with specific kinesins and sterol-rich apical microdomains, are involved in hypha orientation. Mutations that affect these processes generate normal-shaped, growing hyphae that have either abnormal meandering trajectories or attenuated tropic responses. Hyphal tip orientation and tip extension are, therefore, distinct regulatory mechanisms that operate in parallel during filamentous growth, thereby allowing fungi to orchestrate their reproduction in relation to gradients of effectors in their environments

    A systems biology analysis of long and short-term memories of osmotic stress adaptation in fungi

    No full text
    Abstract Background Saccharomyces cerevisiae senses hyperosmotic conditions via the HOG signaling network that activates the stress-activated protein kinase, Hog1, and modulates metabolic fluxes and gene expression to generate appropriate adaptive responses. The integral control mechanism by which Hog1 modulates glycerol production remains uncharacterized. An additional Hog1-independent mechanism retains intracellular glycerol for adaptation. Candida albicans also adapts to hyperosmolarity via a HOG signaling network. However, it remains unknown whether Hog1 exerts integral or proportional control over glycerol production in C. albicans. Results We combined modeling and experimental approaches to study osmotic stress responses in S. cerevisiae and C. albicans. We propose a simple ordinary differential equation (ODE) model that highlights the integral control that Hog1 exerts over glycerol biosynthesis in these species. If integral control arises from a separation of time scales (i.e. rapid HOG activation of glycerol production capacity which decays slowly under hyperosmotic conditions), then the model predicts that glycerol production rates elevate upon adaptation to a first stress and this makes the cell adapts faster to a second hyperosmotic stress. It appears as if the cell is able to remember the stress history that is longer than the timescale of signal transduction. This is termed the long-term stress memory. Our experimental data verify this. Like S. cerevisiae, C. albicans mimimizes glycerol efflux during adaptation to hyperosmolarity. Also, transient activation of intermediate kinases in the HOG pathway results in a short-term memory in the signaling pathway. This determines the amplitude of Hog1 phosphorylation under a periodic sequence of stress and non-stressed intervals. Our model suggests that the long-term memory also affects the way a cell responds to periodic stress conditions. Hence, during osmohomeostasis, short-term memory is dependent upon long-term memory. This is relevant in the context of fungal responses to dynamic and changing environments. Conclusions Our experiments and modeling have provided an example of identifying integral control that arises from time-scale separation in different processes, which is an important functional module in various contexts.</p
    corecore