415 research outputs found

    Characterization of catalytic chemical vapor-deposited SiCN thin film coatings

    Get PDF
    Silicon carbonitride thin films of 480 to 730-nm thicknesses were grown on silicon substrate using ammonia and hexamethyldisilazane gas sources using catalytic chemical vapor deposition process. Compositions of silicon, carbon and nitrogen in the SiCN films were varied by changing the flow rate of ammonia gas. The effect of deposition conditions on the structural, optical and mechanical properties of SiCN thin films was examined. X-ray photoelectron spectroscopy analysis indicated that the higher flow rate of ammonia gas results in higher nitrogen and lower carbon content in the deposited thin films. The measurement of stress as a function of substrate temperature in the SiCN film showed that the stress changes from compressive to tensile in the range of 275°C to 325°C. With these preliminary characterization tests, it is expected that SiCN nano-thin films can be used for developing sensors for harsh environment

    In vitro synergism of fosfomycin and clarithromycin antimicrobials against methicillin-resistant Staphylococcus pseudintermedius

    Get PDF
    BACKGROUND: Bacterial biofilms are of tremendous concern for clinicians, as they can compromise the ability of the immune system and antimicrobial therapy to resolve chronic and recurrent infections. Novel antimicrobial therapies or combinations targeted against biofilm establishment and growth subsequently represent a promising new option for the treatment of chronic infectious diseases. In this study, we treated bacterial biofilms produced by methicillin-resistant Staphylococcus pseudintermedius (MRSP) with a combination of fosfomycin and clarithromycin. We selected these agents, because they prevent biofilm formation and induce antimicrobial synergism that may also target other staphylococci. RESULTS: We determined that the combination of fosfomycin and clarithromycin better impairs S. pseudintermedius biofilm formation compared to treatment with either therapy alone (P < 0.05). Morphological examination of these biofilms via scanning electron microscopy demonstrated that fosfomycin alone does impact biofilm formation on orthopaedic implants. However, this activity is enhanced in the presence of clarithromycin. We propose that the bacteriostatic activity of clarithromycin is accentuated when fosfoymcin is present, as it may allow better penetration into the biofilm matrix, allowing fosfomycin access to sessile bacteria near the surface of attachment. CONCLUSIONS: Here, we demonstrate that the combination of fosfomycin and clarithromycin may be a useful therapy that could improve the clinical outcomes of treating antimicrobial resistant MRSP biofilms

    Soft X-ray phase nano-microscopy of micrometre-thick magnets

    Full text link
    Imaging of nanoscale magnetic textures within extended material systems is of critical importance both to fundamental research and technological applications. Whilst high resolution magnetic imaging of thin nanoscale samples is well-established with electron and soft X-ray microscopy, the extension to micrometer-thick systems with hard X-rays currently limits high resolution imaging to rare-earth magnets. Here we overcome this limitation by establishing soft X-ray magnetic imaging of micrometer-thick systems using the pre-edge phase X-ray Magnetic Circular Dichroism signal, thus making possible the study of a wide range of magnetic materials. By performing dichroic spectro-ptychography, we demonstrate high spatial resolution imaging of magnetic samples up to 1.7 {\mu}m thick, an order of magnitude higher than conventionally possible with absorption-based techniques. This new regime of magnetic imaging makes possible the study of extended non rare-earth systems that have until now been inaccessible, from magnetic textures for future spintronic applications to non-rare-earth permanent magnets

    In vitro synergism of fosfomycin and clarithromycin antimicrobials against methicillin-resistant Staphylococcus pseudintermedius

    Get PDF
    Abstract Background: Bacterial biofilms are of tremendous concern for clinicians, as they can compromise the ability of the immune system and antimicrobial therapy to resolve chronic and recurrent infections. Novel antimicrobial therapies or combinations targeted against biofilm establishment and growth subsequently represent a promising new option for the treatment of chronic infectious diseases. In this study, we treated bacterial biofilms produced by methicillin-resistant Staphylococcus pseudintermedius (MRSP) with a combination of fosfomycin and clarithromycin. We selected these agents, because they prevent biofilm formation and induce antimicrobial synergism that may also target other staphylococci. Results: We determined that the combination of fosfomycin and clarithromycin better impairs S. pseudintermedius biofilm formation compared to treatment with either therapy alone (P &lt; 0.05). Morphological examination of these biofilms via scanning electron microscopy demonstrated that fosfomycin alone does impact biofilm formation on orthopaedic implants. However, this activity is enhanced in the presence of clarithromycin. We propose that the bacteriostatic activity of clarithromycin is accentuated when fosfoymcin is present, as it may allow better penetration into the biofilm matrix, allowing fosfomycin access to sessile bacteria near the surface of attachment. Conclusions: Here, we demonstrate that the combination of fosfomycin and clarithromycin may be a useful therapy that could improve the clinical outcomes of treating antimicrobial resistant MRSP biofilms

    Developments in nanoparticles for use in biosensors to assess food safety and quality

    Get PDF
    The following will provide an overview on how advances in nanoparticle technology have contributed towards developing biosensors to screen for safety and quality markers associated with foods. The novel properties of nanoparticles will be described and how such characteristics have been exploited in sensor design will be provided. All the biosensor formats were initially developed for the health care sector to meet the demand for point-of-care diagnostics. As a consequence, research has been directed towards miniaturization thereby reducing the sample volume to nanolitres. However, the needs of the food sector are very different which may ultimately limit commercial application of nanoparticle based nanosensors

    ASAS–NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and Challenges of Confned and Extensive Precision Livestock Production

    Get PDF
    Modern animal scientists, industry, and managers have never faced a more complex world. Precision livestock technologies have altered management in confned operations to meet production, environmental, and consumer goals. Applications of precision technologies have been limited in extensive systems such as rangelands due to lack of infrastructure, electrical power, communication, and durability. However, advancements in technology have helped to overcome many of these challenges. Investment in precision technologies is growing within the livestock sector, requiring the need to assess opportunities and challenges associated with implementation to enhance livestock production systems. In this review, precision livestock farming and digital livestock farming are explained in the context of a logical and iterative fve-step process to successfully integrate precision livestock measurement and management tools, emphasizing the need for precision system models (PSMs). This fve-step process acts as a guide to realize anticipated benefts from precision technologies and avoid unintended consequences. Consequently, the synthesis of precision livestock and modeling examples and key case studies help highlight past challenges and current opportunities within confned and extensive systems. Successfully developing PSM requires appropriate model(s) selection that aligns with desired management goals and precision technology capabilities. Therefore, it is imperative to consider the entire system to ensure that precision technology integration achieves desired goals while remaining economically and managerially sustainable. Achieving long-term success using precision technology requires the next generation of animal scientists to obtain additional skills to keep up with the rapid pace of technology innovation. Building workforce capacity and synergistic relationships between research, industry, and managers will be critical. As the process of precision technology adoption continues in more challenging and harsh, extensive systems, it is likely that confned operations will beneft from required advances in precision technology and PSMs, ultimately strengthening the benefts from precision technology to achieve short- and long-term goals

    IoT enabled Environmental Monitoring System

    Get PDF
    Nowadays, global warming poses a serious threat to our planet. For this reason, the reduction of the gas emitted into the atmosphere is increasingly sought for its purpose. Wireless Sensor Network (WSN) to monitor the concentration of carbon dioxide can therefore be helpful in monitoring air quality. In this research, the integration of wireless sensor networks into IoT is implemented for environmental monitoring. Subsequently, a practical case is described consisting in the implementation of a driver for reading the value of the environmental CO2 concentration, through a sensor with NDIR technology. This paper presents a customized design of an IoT enabled environment monitoring system to monitor CO2 concentrations. Moreover, the performance of low-cost Non-Dispersive Infra-Red (NDIR) was assessed. Thereafter, data related to the operation of the sensor will be graphically reported, as well as a sampling window that is executed to perform the measurement. Finally, possible future developments of the driver will be presente

    Optical sensors based on polymeric nanofibers layers created by electrospinning

    Get PDF
    Porous materials have become ideal candidates for the creation of optical sensors that are able to reach extremely high sensitivities, due to both the possibility to infiltrate the target substances on them and to their large surface-to-volume ratio. In this work, we present a new alternative for the creation of porous optical sensors based on the use of polymeric nanofibers (NFs) layers fabricated by electrospinning. Polyamide 6 (PA6) NFs layers with average diameters lower than 30 nm and high porosities have been used for the creation of Fabry-PĂ©rot optical sensing structures, which have shown an experimental sensitivity up to 1060 nm/RIU (refractive index unit). This high sensitivity, together with the low production cost and the possibility to be manufactured over large areas, make NFs-based structures a very promising candidate for the development of low-cost and high performance optical sensors.The Spanish government (TEC2015-63838-C3-1-R-OPTONANOSENS); Basque government (KK-2017/00089-ÎĽ4F)
    • …
    corecore