228 research outputs found

    Crack-Like Processes Governing the Onset of Frictional Slip

    Full text link
    We perform real-time measurements of the net contact area between two blocks of like material at the onset of frictional slip. We show that the process of interface detachment, which immediately precedes the inception of frictional sliding, is governed by three different types of detachment fronts. These crack-like detachment fronts differ by both their propagation velocities and by the amount of net contact surface reduction caused by their passage. The most rapid fronts propagate at intersonic velocities but generate a negligible reduction in contact area across the interface. Sub-Rayleigh fronts are crack-like modes which propagate at velocities up to the Rayleigh wave speed, VR, and give rise to an approximate 10% reduction in net contact area. The most efficient contact area reduction (~20%) is precipitated by the passage of slow detachment fronts. These fronts propagate at anomalously slow velocities, which are over an order of magnitude lower than VR yet orders of magnitude higher than other characteristic velocity scales such as either slip or loading velocities. Slow fronts are generated, in conjunction with intersonic fronts, by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the interface occurs until either of the slower two fronts traverses the entire interface, and motion at the leading edge of the interface is initiated. Slip at the trailing edge of the interface accompanies the motion of both the slow and sub-Rayleigh fronts. We might expect these modes to be important in both fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur

    Local alignment of generalized k-base encoded DNA sequence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA sequence comparison is a well-studied problem, in which two DNA sequences are compared using a weighted edit distance. Recent DNA sequencing technologies however observe an encoded form of the sequence, rather than each DNA base individually. The encoded DNA sequence may contain technical errors, and therefore encoded sequencing errors must be incorporated when comparing an encoded DNA sequence to a reference DNA sequence.</p> <p>Results</p> <p>Although two-base encoding is currently used in practice, many other encoding schemes are possible, whereby two ore more bases are encoded at a time. A generalized <it>k</it>-base encoding scheme is presented, whereby feasible higher order encodings are better able to differentiate errors in the encoded sequence from true DNA sequence variants. A generalized version of the previous two-base encoding DNA sequence comparison algorithm is used to compare a <it>k</it>-base encoded sequence to a DNA reference sequence. Finally, simulations are performed to evaluate the power, the false positive and false negative SNP discovery rates, and the performance time of <it>k</it>-base encoding compared to previous methods as well as to the standard DNA sequence comparison algorithm.</p> <p>Conclusions</p> <p>The novel generalized <it>k</it>-base encoding scheme and resulting local alignment algorithm permits the development of higher fidelity ligation-based next generation sequencing technology. This bioinformatic solution affords greater robustness to errors, as well as lower false SNP discovery rates, only at the cost of computational time.</p

    FAAST: Flow-space Assisted Alignment Search Tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High throughput pyrosequencing (454 sequencing) is the major sequencing platform for producing long read high throughput data. While most other sequencing techniques produce reading errors mainly comparable with substitutions, pyrosequencing produce errors mainly comparable with gaps. These errors are less efficiently detected by most conventional alignment programs and may produce inaccurate alignments.</p> <p>Results</p> <p>We suggest a novel algorithm for calculating the optimal local alignment which utilises flowpeak information in order to improve alignment accuracy. Flowpeak information can be retained from a 454 sequencing run through interpretation of the binary SFF-file format. This novel algorithm has been implemented in a program named FAAST (Flow-space Assisted Alignment Search Tool).</p> <p>Conclusions</p> <p>We present and discuss the results of simulations that show that FAAST, through the use of the novel algorithm, can gain several percentage points of accuracy compared to Smith-Waterman-Gotoh alignments, depending on the 454 data quality. Furthermore, through an efficient multi-thread aware implementation, FAAST is able to perform these high quality alignments at high speed.</p> <p>The tool is available at <url>http://www.ifm.liu.se/bioinfo/</url></p

    FAAST: Flow-space Assisted Alignment Search Tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High throughput pyrosequencing (454 sequencing) is the major sequencing platform for producing long read high throughput data. While most other sequencing techniques produce reading errors mainly comparable with substitutions, pyrosequencing produce errors mainly comparable with gaps. These errors are less efficiently detected by most conventional alignment programs and may produce inaccurate alignments.</p> <p>Results</p> <p>We suggest a novel algorithm for calculating the optimal local alignment which utilises flowpeak information in order to improve alignment accuracy. Flowpeak information can be retained from a 454 sequencing run through interpretation of the binary SFF-file format. This novel algorithm has been implemented in a program named FAAST (Flow-space Assisted Alignment Search Tool).</p> <p>Conclusions</p> <p>We present and discuss the results of simulations that show that FAAST, through the use of the novel algorithm, can gain several percentage points of accuracy compared to Smith-Waterman-Gotoh alignments, depending on the 454 data quality. Furthermore, through an efficient multi-thread aware implementation, FAAST is able to perform these high quality alignments at high speed.</p> <p>The tool is available at <url>http://www.ifm.liu.se/bioinfo/</url></p

    Sequencing by Hybridization of Long Targets

    Get PDF
    Sequencing by Hybridization (SBH) reconstructs an n-long target DNA sequence from its biochemically determined l-long subsequences. In the standard approach, the length of a uniformly random sequence that can be unambiguously reconstructed is limited to due to repetitive subsequences causing reconstruction degeneracies. We present a modified sequencing method that overcomes this limitation without the need for different types of biochemical assays and is robust to error

    Predicting a small molecule-kinase interaction map: A machine learning approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present a machine learning approach to the problem of protein ligand interaction prediction. We focus on a set of binding data obtained from 113 different protein kinases and 20 inhibitors. It was attained through ATP site-dependent binding competition assays and constitutes the first available dataset of this kind. We extract information about the investigated molecules from various data sources to obtain an informative set of features.</p> <p>Results</p> <p>A Support Vector Machine (SVM) as well as a decision tree algorithm (C5/See5) is used to learn models based on the available features which in turn can be used for the classification of new kinase-inhibitor pair test instances. We evaluate our approach using different feature sets and parameter settings for the employed classifiers. Moreover, the paper introduces a new way of evaluating predictions in such a setting, where different amounts of information about the binding partners can be assumed to be available for training. Results on an external test set are also provided.</p> <p>Conclusions</p> <p>In most of the cases, the presented approach clearly outperforms the baseline methods used for comparison. Experimental results indicate that the applied machine learning methods are able to detect a signal in the data and predict binding affinity to some extent. For SVMs, the binding prediction can be improved significantly by using features that describe the active site of a kinase. For C5, besides diversity in the feature set, alignment scores of conserved regions turned out to be very useful.</p

    Grammar-based distance in progressive multiple sequence alignment

    Get PDF
    Background: We propose a multiple sequence alignment (MSA) algorithm and compare the alignment-quality and execution-time of the proposed algorithm with that of existing algorithms. The proposed progressive alignment algorithm uses a grammar-based distance metric to determine the order in which biological sequences are to be pairwise aligned. The progressive alignment occurs via pairwise aligning new sequences with an ensemble of the sequences previously aligned. Results: The performance of the proposed algorithm is validated via comparison to popular progressive multiple alignment approaches, ClustalW and T-Coffee, and to the more recently developed algorithms MAFFT, MUSCLE, Kalign, and PSAlign using the BAliBASE 3.0 database of amino acid alignment files and a set of longer sequences generated by Rose software. The proposed algorithm has successfully built multiple alignments comparable to other programs with significant improvements in running time. The results are especially striking for large datasets. Conclusion: We introduce a computationally efficient progressive alignment algorithm using a grammar based sequence distance particularly useful in aligning large datasets

    The Effects of Alignment Quality, Distance Calculation Method, Sequence Filtering, and Region on the Analysis of 16S rRNA Gene-Based Studies

    Get PDF
    Pyrosequencing of PCR-amplified fragments that target variable regions within the 16S rRNA gene has quickly become a powerful method for analyzing the membership and structure of microbial communities. This approach has revealed and introduced questions that were not fully appreciated by those carrying out traditional Sanger sequencing-based methods. These include the effects of alignment quality, the best method of calculating pairwise genetic distances for 16S rRNA genes, whether it is appropriate to filter variable regions, and how the choice of variable region relates to the genetic diversity observed in full-length sequences. I used a diverse collection of 13,501 high-quality full-length sequences to assess each of these questions. First, alignment quality had a significant impact on distance values and downstream analyses. Specifically, the greengenes alignment, which does a poor job of aligning variable regions, predicted higher genetic diversity, richness, and phylogenetic diversity than the SILVA and RDP-based alignments. Second, the effect of different gap treatments in determining pairwise genetic distances was strongly affected by the variation in sequence length for a region; however, the effect of different calculation methods was subtle when determining the sample's richness or phylogenetic diversity for a region. Third, applying a sequence mask to remove variable positions had a profound impact on genetic distances by muting the observed richness and phylogenetic diversity. Finally, the genetic distances calculated for each of the variable regions did a poor job of correlating with the full-length gene. Thus, while it is tempting to apply traditional cutoff levels derived for full-length sequences to these shorter sequences, it is not advisable. Analysis of β-diversity metrics showed that each of these factors can have a significant impact on the comparison of community membership and structure. Taken together, these results urge caution in the design and interpretation of analyses using pyrosequencing data

    A Comparison of rpoB and 16S rRNA as Markers in Pyrosequencing Studies of Bacterial Diversity

    Get PDF
    Background: The 16S rRNA gene is the gold standard in molecular surveys of bacterial and archaeal diversity, but it has the disadvantages that it is often multiple-copy, has little resolution below the species level and cannot be readily interpreted in an evolutionary framework. We compared the 16S rRNA marker with the single-copy, protein-coding rpoB marker by amplifying and sequencing both from a single soil sample. Because the higher genetic resolution of the rpoB gene prohibits its use as a universal marker, we employed consensus-degenerate primers targeting the Proteobacteria. &lt;p/&gt;Methodology/Principal Findings: Pyrosequencing can be problematic because of the poor resolution of homopolymer runs. As these erroneous runs disrupt the reading frame of protein-coding sequences, removal of sequences containing nonsense mutations was found to be a valuable filter in addition to flowgram-based denoising. Although both markers gave similar estimates of total diversity, the rpoB marker revealed more species, requiring an order of magnitude fewer reads to obtain 90% of the true diversity. The application of population genetic methods was demonstrated on a particularly abundant sequence cluster. &lt;p/&gt;Conclusions/Significance: The rpoB marker can be a complement to the 16S rRNA marker for high throughput microbial diversity studies focusing on specific taxonomic groups. Additional error filtering is possible and tests for recombination or selection can be employed

    Prostaglandin E2 Reverses Aberrant Production of an Inflammatory Chemokine by Microglia from Sandhoff Disease Model Mice through the cAMP-PKA Pathway

    Get PDF
    Background: Sandhoff disease (SD) is a neurodegenerative lysosomal b-hexosaminidase (Hex) deficiency involving excessive accumulation of undegraded substrates, including terminal GlcNAc-oligosaccharides and GM2 ganglioside. Microglia-mediated neuroinflammation contributes to the pathogenesis and progression of SD. Our previous study demonstrated that MIP-1a, a putative pathogenic factor for SD, is up-regulated in microglial cells derived from SD model mice (SD-Mg) through activation of Akt and JNK. Methodology/Principal Findings: In this study, we first demonstrated that prostaglandin E2 (PGE2), which is one of the lipid mediators derived from arachidonic acid and is known to suppress activation of microglia, reduced the aberrant MIP-1a production by SD-Mg to the same level as by WT-Mg. PGE2 also attenuated the activation of Akt and JNK. The inhibition of MIP-1a production and the activation of Akt and JNK occurred through the EP2 and 4/cAMP/PKA signaling pathway in the murine microglia derived from SD model mice. Conclusions/Significance: We propose that PGE2 plays a role as a negative regulator of MIP-1a production in th
    corecore