181 research outputs found

    Size-consistent self-consistent configuration interaction from a complete active space : Excited states

    Get PDF
    The self-consistent size consistent on a complete active space singly and doubly configuration interaction (SC)2CAS-SDCI method is applied to excited states. The (SC)2 correction is performed on a closed shell state, and the excited states are obtained by diagonalization of the dressed matrix. A theoretical justification of the transferability of the improvement concerning the dressing state to all roots of the matrix is presented. The method is tested by three tests on the spectrum of small [email protected] ; [email protected]

    Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing

    Get PDF
    This paper presents a new self‐consistent dressing of a singles and doubles configuration interaction matrix which insures size‐consistency, separability into closed‐shell subsystems if localized molecular orbitals (MOs) are used, and which includes all fourth order corrections. This method yields, among several schemes, a reformulation of the coupled cluster method, including fully the cluster operators of single and double excitations, and partially those of the triples (Bartlett’s algorithm named CCSDT‐1a). Further improvement can be easily included by adding exclusion principle violating corrections. Since it leads to a matrix diagonalization, the method behaves correctly in case of near degeneracies between the reference determinant and some doubles. Due to its flexibility this formulation offers the possibility of consistent combination with less expensive treatments for the study of very large [email protected] ; [email protected]

    Topical Analgesia with Lidocaine Plus Diclofenac Decreases Pain in Benign Anorectal Surgery: Randomized, Double-blind, and Controlled Clinical Trial

    Get PDF
    Objective: The aim of this study is to evaluate the efficacy and safety of a topical formulation containing lidocaine plus diclofenac (CLIFE1) compared to CLIFE2 (lidocaine), to decrease pain in benign anorectal surgery (BARS) to date not evaluated. Background: More than 50% of patients undergoing BARS, especially hemorrhoidectomy, suffer from moderate and severe postoperative pain. This remains an unresolved problem that could be addressed with the new CLIFE1 topical treatment. Methods: A multicenter, randomized double-blind, active-controlled parallel-group superiority trial, was conducted in two Spanish hospitals. Patients undergoing BARS (hemorrhoids, anal fistula and anal fissure) were randomized at the end of surgery at a 1:1 ratio to receive first dose either CLIFE1 (n=60) or CLIFE2 (n=60) anorectal topical treatment, and after every 12 hours for the first three postoperative days and once a day from the fourth to sixth. The primary outcome was average of pain decrease after topical treatment, measured with visual analogue scale (VAS) by the patients themselves, the evening in the surgery day and four times daily for the first three postoperative days. Results: The results of 120 patients included out of 150 selected undergoing BARS show a decrease in pain after CLIFE1 topical treatment (7.47±13.2) greater than with CLIFE2 (4.38±6.75), difference -3.21 (95% CI) -5.75; -0.676; p=0.008), decreasing significantly postoperative pain (≥ 9 mm, VAS) in 35% of patients undergoing benign anorectal surgery, compared to 18.33 % treated with lidocaine. Conclusions: The CLIFE1 topical treatment shows better analgesic efficacy than CLIFE2 in BARS

    NEXT-100 Technical Design Report (TDR). Executive Summary

    Get PDF
    In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (bbonu) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.Comment: 32 pages, 22 figures, 5 table

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements

    Get PDF
    We have investigated the possibility of calibrating the PMTs of scintillation detectors, using the primary scintillation produced by X-rays to induce single photoelectron response of the PMT. The high-energy tail of this response, can be approximated to an exponential function, under some conditions. In these cases, it is possible to determine the average gain for each PMT biasing voltage from the inverse of the exponent of the exponential fit to the tail, which can be done even if the background and/or noise cover-up most of the distribution. We have compared our results with those obtained by the commonly used single electron response (SER) method, which uses a LED to induce a single photoelectron response of the PMT and determines the peak position of such response, relative to the pedestal peak (the electronic noise peak, which corresponds to 0 photoelectrons). The results of the exponential fit method agree with those obtained by the SER method when the average number of photoelectrons reaching the first dynode per light/scintillation pulse is around 1.0. The SER method has higher precision, while the exponential fit method has the advantage of being useful in situations where the PMT is already in situ, being difficult or even impossible to apply the SER method, e.g. in sealed scintillator/PMT devices

    Present Status and Future Perspectives of the NEXT Experiment

    Get PDF
    NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the 136Xe isotope. It is under construction in the Laboratorio Subterráneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment

    Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment

    Get PDF
    NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the beta beta experiment. In this paper, we present a novel 3D imaging concept using SiPMs coated with tetraphenyl butadiene (TPB) for the EL read out and its first implementation in NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. The design and the first characterization measurements of the NEXT-DEMO SiPM tracking system are presented. The SiPM response uniformity over the tracking plane drawn from its gain map is shown to be better than 4%. An automated active control system for the stabilization of the SiPMs gain was developed, based on the voltage supply compensation of the gain drifts. The gain is shown to be stabilized within 0.2% relative variation around its nominal value, provided by Hamamatsu, in a temperature range of 10 degrees C. The noise level from the electronics and the SiPM dark noise is shown to lay typically below the level of 10 photoelectrons (pe) in the ADC. Hence, a detection threshold at 10 pe is set for the acquisition of the tracking signals. The ADC full dynamic range (4096 channels) is shown to be adequate for signal levels of up to 200 pe/mu s, which enables recording most of the tracking signals
    corecore