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This paper presents a new self-consistent dressing of a singles and doubles configuration interac
matrix which insures size-consistency, separability into closed-shell subsystems if localize
molecular orbitals~MOs! are used, and which includesall fourth order corrections. This method
yields, among several schemes, a reformulation of the coupled cluster method, including fully t
cluster operators of single and double excitations, and partially those of the triples~Bartlett’s
algorithm named CCSDT-1a!. Further improvement can be easily included by adding exclusion
principle violating corrections. Since it leads to a matrix diagonalization, the method behave
correctly in case of near degeneracies between the reference determinant and some doubles. D
its flexibility this formulation offers the possibility of consistent combination with less expensive
treatments for the study of very large systems. ©1995 American Institute of Physics.
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I. INTRODUCTION

The size-consistency requirement is a fundamental
pect of the quantum many-body problem.1–4While truncated
configuration interactions~CI! are variational and suitabl
for rational and flexible selections, they are n
size-consistent.5 A more correct scheme is the coupled clu
ter ~CC!6–12 expansion. At its singles and doubles appro
mation ~CC-SD!, it ignores part of the triples and thus do
not insure the Rayleigh–Schro¨dinger fourth order. The com
plete inclusion of the triples is rather expensive, and th
perturbative treatments of the triples are frequently propo
~CCSD~T!!,13–15although they do not behave properly wh
single bonds are broken. Although the full CCSDT mod
has been developed16–18 the calculations performed kee
rather illustrative character due to the cost of the meth
Moreover, since the CC equations are nonlinear, they m
be solved iteratively. The numerical algorithms for solvi
sets of nonlinear equations suffer for risk of poor conv
gence and require rather large number of iterations.19,20

Somewhere in between CI and CC one must mention
approximate size-extensive CEPA~coupled electron pair
approximation!21–26 and CPF ~coupled pair function!27,28

models, which exist in several versions and are essent
based on a single reference and truncation to double ex
tions, plus an approximate cancellation of the unlinked c
rections.

In a previous work,29 the size extensivity of the lowes
root of any selected CI has been obtained by a proper dr
ing ~or change! of the diagonal energies of the CI matri
This dressing is self-consistent, depending on the coeffici
of the doubles, so that the method has been labe
~SC!2CI ~size-consistent self-consistent CI!. Its implementa-
tion is straightforward with negligible extra costs in terms
memory and computation time, and the efficiency is rea
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impressing,30,31specially when a direct selected CI algorithm
is used.32

The method was derived in terms of the intermediat
Hamiltonian Theory33 ~a generalization of effective
Hamiltonians33!, but it may be seen as the most exact CEP
scheme when the model space is the SDCI space or a
generalized CEPA scheme for arbitrary CI’s. It insures th
strict separability of the energy

EAB→EA1EB when r AB→` ~1!

for the separation of anAB system intoA andB closed shell
subsystems provided that localized MO’s are used. Th
method consists inadding unlinkedeffects of the outer space
onto the diagonal energies in order to cancelall unlinked
terms produced by the diagonalization. Of course, if th
model space consists in the SDCI space, the linked contrib
tions of triples and quadruples are not taken into account
that the method is poorer than CC-SD which correctly trea
the linked contribution of the quadruples.

The linked effects of the triples and quadruples hav
been added once35 a posteriorias the mean value of an ad-
ditional dressing operator, taken on the vector resulting fro
the ~SC!2SDCI. Actually, this was an approximate applica
tion of a fundamental idea, namely the total dressing of th
model space by the linked and unlinked effects of the out
space.

The preceding paper36 has presented a simple definition
of a diagonal dressing in terms of the coefficients of th
desired vector on the outer space determinants, together w
two perturbative evaluations of these coefficients~and there-
fore of the dressing!. The test calculations were convincing,
especially when high-order exclusion principle violating
~EPV! corrections were included. The present paper explor
the possibility to replace these perturbative evaluations of t
5/103(7)/2576/13/$6.00 © 1995 American Institute of Physics¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2577Nebot-Gil et al.: Self consistent intermediate Hamiltonians
dressing by coupled cluster type estimates, which are
pected to behave more satisfactorily when near degenera
occur in the model space. A formulation is found, which
equivalent to CCSD method, if only the unlinked contrib
tions to triples and quadruples are taken into account,
analogous to CCSDT-1a,37,38 if the linked contributions to
Triples are perturbatively accounted for. Therefore, t
method insures the strict separability into closed shell s
systems when localized MO’s are used. Although leading
a matrix built on the SDCI space, the method treats all
fourth order effects of the triples and quadruples.

II. SELF-CONSISTENT INTERMEDIATE HAMILTONIAN
WITH HERMITIAN DRESSINGS

A. Matrix formulation of the intermediate Hamiltonians

We shall not recall the definition and advantage of inte
mediate Hamiltonians.33We suppose that we only search th
exact energy and the projection of the exact eigenvector o
the model space of a single root, this eigenvector having
largest amplitude on themainmodel space determinantF0

~or reference determinant!. The intermediate model space
spanned by~at least! all the determinantsF i interacting with
F0 . Thus,F0 and all theF i built the model spaceS. Then,
if P is the projector on the model spaceS

P5uF0&^F0u1(
iPS

uF i&^F i u, ~2!

it leads to the diagonalization of the dressed matrix

P„H1D…P, ~3!

whereD is the dressing operator.
If we define Q512P as the projection on the oute

space, andc as the vector of the coefficients of the exa
eigenvector:

C05F01(
iPS

ciF i1 (
a¹S

caFa, ~4!

the exact Schro¨dinger equation (H2E0)C050 may be
written for the rows associated to the model space in a m
tricial formulation:

PHPc2E0P1Pc1PHQc50. ~5!

The last termPHQc is a vectorV the elements of which
are

Vi5 (
a¹S

ca^F i uHuFa& ~6!

so that Eq.~5! may be written

PHPc2E0P1Pc52V. ~7!

The dressed matrix eigenequation is

@P„H1D…P2E0P1P#Pc50. ~8!

The condition under which the above equation will pr
vide the exact energy and the exact components of the eig
vector on the model space is that

V5PDPc5DPc ~9!
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or simply, restricted to the model space:

V5Dc. ~10!

This equation is not sufficient to defineD. Of course,
D might be a full square matrix as occurs in the partitionin
technique.39–42 However, it is sufficient to define the dress
ing throughn matrix elements only since there are onlyn
degrees of freedom~1 eigenenergy,n-1 coefficients!.

B. Dressing formulations

One possibility is the diagonal dressing43

D i j5D i id i j , ~11!

D i i5ci
21(

a¹S
ca^F i uHuFa&. ~12!

This solution has the drawback of the division byci
which may lead to numerical instabilities and the possib
appearance of physically meaningless eigenenergies
P„H1D…P below the relevant rootE0 .

Two of us have proposed elsewhere a first colum
dressing,43 concerning the elements^F i uDuF0&

^F i uDuF0&5 (
a¹S

ca^F i uHuFa& ~13!

which does not lead to such numerical troubles but which
non-hermitian.

We strongly recommend a new formulation of the dres
ing concerning the first column and first row only. The firs
column of D is identical to the preceding except fo
^F0uDuF0&, the dressing is made hermitian taking

^F0uDuF i&5^F i uDuF0&, ~14!

andD00 is then calculated as

D005^F0uDuF0&5 (
a¹S

ca^F0uHuFa&2(
iÞ0

ci^F i uDuF0&.

~15!

These relations are easily obtained from the matrix multip
cation of the first row ofD by c.

In the case where the model space includes all the de
minants interacting withF0 the first summation is zero, and

D0052(
iÞ0

ci^F i uDuF0&. ~16!

This formulation is hermitian and has shown to be nume
cally stable.

C. Estimation of the coefficients of the outer space

All these formulations remain academic as far as th
coefficients on the outer space are unknown. Of course,
practice they can be approximately evaluated from t
knowledge of theci ’s. Therefore these dressings requir
achieving a self-consistency condition. In the precedin
paper36 the coefficientsca were evaluated perturbatively.
This means that the coefficients for triple and quadruple e
citations are obtained by a first order perturbation upon
vector built on all singly and doubly excited determinant
, No. 7, 15 August 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



FIG. 1. ~a! Disconnected and~b! connected contributions to the coefficients
of the quadruples.

2578 Nebot-Gil et al.: Self consistent intermediate Hamiltonians
e
m

n
a

ll
n
o
e

u
w
fo

f
o
o

p
r
f
.,

tor.
he
en-
c-

t
-

-

-
n

f
ra-

e
s
ds
The use of theseca’s in Eq. ~8! gives an energy which is
correct to fourth order and includes important fifth ord
terms. The present work will try to improve such a sche
by systematically using the factorization theorem which
part of perturbation theory. This will transform the precedi
order-by-order expansion into a self-consistent, all-order
proach.

The following paragraphs will show how such an a
order scheme is obtained, first for the quadruple excitatio
Then the triple excitations will be considered. A comparis
with the coupled cluster approach will follow. Finally, w
shall show how further improvements can be obtained
considering the nonadditivity of the denominators~this addi-
tivity is implicit in the Möller–Plesset perturbation theory!
or by including higher-order terms in the CEPA spirit, b
this time for triple and quadruple excitations. As far as
know this is the first time that EPV terms are included
excitations higher than single and double ones.

III. COUPLED CLUSTER FORMULATIONS OF SELF-
CONSISTENT INTERMEDIATE HAMILTONIANS

A. Quadruple excitations

Up to third order in the wave function, two kinds o
quadruple excitations have to be considered. At the sec
order disconnected quadruples appear, the connected
appearing at the next order~see Fig. 1!.

Regarding the energy, the connected quadruple am
tudes will contribute for the first time at fifth order, and fu
thermore the coefficientca

Q cannot be written as a function o
the ci ’s. They have to be evaluated by perturbation, e.g
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second order perturbation upon a singles and doubles vec
This is, of course, outside the scope of this method. T
disconnected quadruples should be more important; their
ergy contribution appears at fourth order. By using the fa
torization theorem~see Ref. 44! one can show that the sum
of the two terms of Fig. 1~a!, can be rewritten as a produc
which by inspection yields the following second order rela
tion

ca
Q5(

~ i , j !
ci

~1!cj
~1!, ~17!

where (i , j ) stands for all couples of disjoint double excita
tions creatingFa from F0

Fa5Dj
1Di

1F05Dk
1Dl

1F05••• . ~18!

Equation~17!, giving the coefficient of quadruples as prod
ucts of double excitation coefficients, is generalized to a
all-order relation by writing

ca
Q5 (

~ i , j !

Dj
1Di

1F05Fa

cicj , ~19!

where theci coefficients are obtained by diagonalization o
the dressed Hamiltonian, giving thus a self-consistent ite
tive method.

From this relation it is very easy to derive approximat
schemes such as ‘‘exact CEPA method,’’ called by u
~SC!2MRCI and already presented in Ref. 29. These metho
which considered EPV terms only will not be used here.
, No. 7, 15 August 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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FIG. 2. ~a! Connected and~b! disconnected contributions to the coefficients of the triples.
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It is obvious that our scheme must have some rela
with the coupled cluster method, that writes the amplitud
the quadruple excitations as product of double excitation
plitudes. A thorough comparison of both methods will
given later.

Comparison should also be done with our previous
turbative scheme.36 Due to its perturbative character, one
the two double excitations forming the quadruple was
scribed at all-order, whereas the other one was kept at
order only. We remedy, now, this unsymmetric way of
scribing quadruple excitations, and thus include furt
higher terms. It should be noted also that the fact tha
denominators appear explicitly in this new scheme is
tainly in favor of its convergence properties during the ite
tions.

B. Triple excitations

At variance with quadruple excitations, the connec
amplitudes of the triples appear before the disconne
ones. These connected triples will contribute at fourth o
to the energy whereas the disconnected ones at fifth o
only ~see Fig. 2!.

The connected triples~Tc! coefficients cannot be rewri
ten in terms of the coefficients of the doubles and singles
thus have to be derived by perturbation upon a singly
doubly excited vector. They are single excitations of dou
excitations.
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ca
Tc5

( i8ci
~1!^FauHuDi

1F0&
Da

~20!

where(8 runs over all the double excitations for which there
is no single excitationMk

1 such thatMk
1Di

1F05Fa and
Da is an energy difference to be defined by the chosen pe
turbative scheme~MP, EN ...!. The second order relation will
be generalized to an all-order relation by writing

ca
Tc5

( i8ci^FauHuDi
1F0&

Da
~21!

and we have again an iterative scheme which relates th
double and triple excitations.

It should be noted that the generalization is perfectly
well founded. If instead of a pure single reference perturba
tion theory we used a multireference method, the relatio
~21! would be obtained directly.

Comparison with coupled cluster will show, later, that
this kind of Triple contributions is obtained only by CCSDT
schemes or some of its approximations.

Concerning the comparison with our previous method
there is no direct improvement in the treatment of the con
nected triples, however the double-excitation coefficient
used in Eq.~21! are of better quality due to the improvement
of the ca

Q .
The disconnected triples~Tdc! part comes from the prod-

ucts of disjoint single and double excitations@see Fig. 2~b!#
, No. 7, 15 August 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2580 Nebot-Gil et al.: Self consistent intermediate Hamiltonians
Fa
Tdc5Mi

1Dj
1F05Mk

1Dl
1F05••• . ~22!

Calling ci8 the coefficient of the singly excited determ
nantF i5Mi

1F0 , and using again the factorization theore
one can show that this sum can be rewritten as

ca
Tdc5(

~ i , j !
ci

~1!8cj
~1!, ~23!

where (i , j ) stands here for the nine couples of single-doub
excitations such that

Dj
1Mi

1F05Fa. ~24!

This will be generalized to the obvious form

ca
Tdc5 (

~ i , j !

Dj
1Mi

1F05Fa

ci8cj . ~25!

By including such terms in the dressing will include fift
order diagrams in the energy. One of them is shown in Fig

Such terms are automatically included if one uses natu
or Brueckner orbitals instead of HF orbitals.45,46Comparison
with our previous method shows that the single excitati
coefficient have changed from the first order to an all-ord
description. Since no denominators appear explicitly, be
convergence properties can be expected during the iterati

C. Comparison with the coupled cluster formalism

Let us expandC0 in Eq. ~4! in a coupled cluster~CC!
type way:

C05eSF0. ~26!

If we take, for instance, the CCSD approximatio
S5T11T2 and

C05F01~T11T21
1
2T1

2!F01~T1T21
1
6T1

31 1
2T1

2T2

1 1
2T2

21 1
24T1

4!F0. ~27!

Written in this way, it is easy to see that each of the rig
hand terms in Eq.~27! has its counterpart in Eq.~4!, for the
case that the model space in Eq.~4! includesF0 , all its
Singles and all its Doubles.

Now, if we considerC0 in terms of the CI wave operato
expansion and we group in the same way all excitations up
quadruples,

C05F01~C11C2!F01~C31C4!F0 ~28!

it follows that the procedure of taking into account the e
fects of the triples and quadruples on the SDCI matrix by

FIG. 3. Fifth order energy diagram.
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proper dressingD j5cj
21(a¹Scahja can be easily made

equivalent to a full CCSD procedure. This is made cleare
through the equivalence between theTi andCi operators

C15T1, ~29!

C25T21
1
2T1

2, ~30!

C35
1
6T1

31T1T2, ~31!

C45
1
24T1

41 1
2T2

21 1
2T1

2T2. ~32!

Now takingT1 andT2 from Eqs.~29! and ~30! and substi-
tuting them into Eqs.~31! and ~32!, we can write

C35C1C22
1
3C1

3, ~33!

C45
1
2C2

22 1
12C1

4, ~34!

i.e., we can rewrite the CCSD, originally based solely o
T1 andT2 amplitudes, in terms ofci model space wave func-
tion coefficients andca coefficients.

Comparison of Eqs.~33! and ~34! with our ca
Tdc andca

Q

will reveal the close relation between both methods. Th
difference is given by third and fourth powers ofC1 operator.
For the triple excitations these terms will contribute at 8t
order of perturbation and for the quadruple ones at the 11
order! So the difference should be very tiny, indeed! Thes
missing terms can, of course, be included easily in ou
scheme but this point is not obvious. Comparison with a
all-order expansion will show that these terms are only som
of the numerous terms appearing at those orders. There is
a priori way to say which scheme gives the best ‘‘arbitrar
weight’’ to these powers ofC1 .

Anyway, in another work,47 we have included theseC1

powers in order to show the strict equivalence between bo
schemes. Nevertheless, it remains a very important diffe
ence in the practicability. Our scheme yields a diagonaliz
tion of an effective Hamiltonian~containing no energy dif-
ferences! whereas the CCSD scheme is the resolution of
system of equations~containing energy differences! of which
convergence is often improbable.

So far, we have only considered the disconnected term
it remains to see how coupled cluster includes connect
triple excitations. We have already said that we will not in
clude connected quadruple excitations but their effects ha
been studied by Bartlett.48,49 In order to includeTc one
should use the CCSDT scheme. Such a procedure will, i
deed, include the connected triples but also numerous high
order terms yielding a method which goes asn8.48,49 For
most of the chemical problems such a high cost is prohibitiv
and approximations should be derived. The most radical o
would be to decouple theTc amplitudes from theT1 and
T2 ones and to calculate their contributions by a MP4 for-
mula, using however iterativeT1 andT2 amplitudes: this is
the CCSD~T!.13–15A similar method can be easily obtained
with our procedure. More interesting is to keep the couplin
between outer and model space as we do by having theca

Tc in
the iterative procedure.

Rewritten in terms of coefficients but in a coupled clus
ter manner, we have theci of the model space and
, No. 7, 15 August 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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2581Nebot-Gil et al.: Self consistent intermediate Hamiltonians
C35C1C21Ca
Tc1~2 1

3C1
3!, ~35!

C45
1
2C2

21~2 1
12C1

4!, ~36!

the parenthesis meaning that, at convenience, the powe
C1 should or not be included. Including all terms would gi
similar equations as CCSDT so the approximations are d
in fact, in the equation definingT3 or Ca

Tc . Comparing our

Ca
Tc equation@Eq. ~21!# with the T3 equation as given by

Bartlett37 we can see that we include only the first term
this complicated equation. In the nomenclature of Bart
this scheme corresponds to CCSDT-1a.38 However, in our
approach we are free to define the denominator of Eq.~21!
by taking MP or EN method or to further improve this d
nominator by using CEPA arguments.

So, in conclusion, we will say that both methods a
quite similar but that we are working with wave functio
coefficients and thus diagonalizing, whereas the CC
proach uses amplitudes of excitations and must solve q
complicated systems of equations. Due to the fact t
nowadays, the diagonalization algorithms are very effici
and can be made direct,50,51 we think that our formulation
opens the road to very efficient Direct methods as we p
pose in the present work, or to very efficient CCSDT-n.

D. Proposed nomenclature

The acronyms used in this work, which have been
signed in order to take into account the great flexibility of t
dressed intermediate Hamiltonian method, first indicate
Hamiltonian matrix which is iteratively dressed and diag
nalized, say SDCI. Then, in rectangular braces, the te
included in the dressing: Tdc and Q for disconnected triple
and quadruples, respectively, and T for both connected
disconnected triples. The subindexf stands for ‘‘factoriza-
tion’’ and p for ‘‘perturbation,’’ as the way of calculating
disconnected terms. Inclusion of higher order EPV term
also indicated by adding1EPV to subindex. Angular brace
indicate that the mean value of the dressed Hamiltonians
been taken instead of an iterative diagonalization proced

E. Improvements of the SDCI[TQ] f

Our procedure can be improved in two ways. First o
should consider that the factorization theorem is only corr
if the energies are additive which is implicit with Mo¨ller-
Plesset theory. This is a very good approximation, howe
there are cases where the nonadditivity can be crucial, a
example in Solid State Physics. Examples are easily foun
molecular problems also.52 Second, one can think of usin
CEPA arguments in order to improve the description of
triple and quadruple excitations.

1. Nonadditivity of the denominators

If one no longer assumes the energy denominators a
tivity, one may move back to the perturbative evaluation
ca as a sum of contributions as in Eq.~17!, which is trans-
lated diagrammatically in Fig. 1~a!. Thus,

ca
Q5

(~ i , j !~ci^FauHuF i&1cj^FauHuF j&!

E0
02Ea

0 , ~37!
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where (i , j ) stands for the couples of double excitations suc
that

Dj
1Di

1F05Fa. ~38!

Since

^FauHuF i&5^F j uHuF0&, ~39!

^FauHuF j&5^F i uHuF0&, ~40!

and since

ci
~1!5

^F i uHuF0&
E0
02Ei

0 , ~41!

cj
~1!5

^F j uHuF0&
E0
02Ej

0 , ~42!

replacingci for ci
(1) ~i.e. a variational evaluation of the co-

efficients of the doubles for the perturbative one!, Eq. ~37!
becomes

ca
Q5

(~ i , j !cicj@~E0
02Ei

0!1~E0
02Ej

0!#

E0
02Ea

0 . ~43!

In a more compact notation, callingD the energy differ-
ences,

ca
Q5

(~ i , j !cicj~D i1D j !

Da
~44!

and similarly for the triples

ca
Tdc5

(~ i , j !ci8cj~D i1D j !

Da
. ~45!

This formulation will of course use the Epstein–Nesbe
definition ofH0 as the diagonal of the Hamiltonian CI ma-
trix.

2. Inclusion of the EPV terms

This proposal has already been formulated in the prece
ing paper for the perturbative dressing of the SDCI matrix b
the triples and quadruples~SDCI@TQ#p , previously labeled
TD1!. Its justification is based on an earlier work,29 propos-
ing a method,~SC!2CI, which makes size-consistent any se
lected CI. The coefficientca of any triple or quadrupleFa is
supposed to be obtained by considering a CI matrix whe
Fa has been added to the SDCI space. Then the size con
tency is obtained by dressingFa by the quantity
Ecorr1EPVa whereEcorr is the correlation energy and EPVa

represents the effect of all double excitations which are im
possible to perform onFa

EPVa52 (
k

Dk
1Fa50

ck^F0uHuFk&. ~46!

Then, the eigenequation forFa leads to the equation

ca5
( ici^FauHuF i&

^F0uHuF0&2~^FauHuFa&1EPVa!
. ~47!

The denominator including the EPV corrections may b
used for the linked part of triples only, i.e., the perturbativ
, No. 7, 15 August 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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residue in the here proposed SDCI@TQ#f scheme. A direct
derivation of the use of this denominator may be obtained
an infinite partial summation of EPV diagrams.53

F. Further improvements

In his concluding remarks of a recent workshop devot
to the coupled cluster methods,54 Kutzelnigg pointed out the
necessity to imagine some flexible combinations of coup
cluster with lower cost approximations, in order to be able
treat problems with larger number of electrons and/or larg
basis sets. Thinking in terms of dressing actually allows o
to derive a whole series of approximations combining co
sistently different methods of different accuracies and co

1. Combination with poorer approximations

Suppose that approximate natural orbitals can be
tained by a low cost calculation of the density matrix~for
instance, a MP2 calculation!. Then, it is possible to retain the
most active natural MOs~those of occupation number close
to one! in a class-1. The dressing of the SDCI matrix may
done as follows:

—by the ~SC!2SDCI procedure~taking into account the
effect of the unlinked triples and quadruples!

—and by treating as a full dressing the effects of t
triples and quadruples which only involve holes and partic
of the class-1. Then then7 time-limiting step runs over a
smaller number of MOs.

One may also consider a three-class partition of the N
putting into a class-3 the NOs whose occupation numbers
close to 2 or 0. Then the SDCI is reduced to the determina
involving only the MOs of class-1 and class-2. The oth
doubly excited determinants may be treated through the s
consistently dressed independent pair excitati
approximation.55 A unique vector of all coefficients obtained
at different levels, is used to define EPV terms and to dres
a consistent manner the energies of the large SDCI ma
and of the small 232 matrices, as already proposed an
practiced.56

2. Higher accuracy approximation

One may of course dress a SDTCI matrix by the qu
druples and pentuples as was done here for the SDCI ma
but this will be in general impracticable, except if a pres
lection of MOs have been done. It seems more reasonabl
add the most important triples and quadruples~or more
highly excited determinants! to singles and doubles. Then
is perfectly possible to dress the selected triples and q
druples by the unlinked effects of the pentuples a
hexuples, as done in the~SC!2CI method. The effect of the
other triples and quadruples on the singles and doub
would then be added, including their linked effect, as pr
posed in the present work. The method would be si
consistent and would include the effect of the leadingT3 and
T4 operators at a very moderate cost. This procedure wo
allow to combine a CAS main model space with
CCSDT-1a single reference formalism and would certain
be very efficient for the study of multiple bond~s! breaking,
without entering the complexity of the MRCC methods.
J. Chem. Phys., Vol. 103,Downloaded¬29¬Jan¬2010¬to¬147.156.182.23.¬Redistribution¬subject
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G. Relation with other methods: Taking the mean
value of dressed Hamiltonians

In CC methods, the information about triples and qu
druples is stocked in the wave function by means of theeS

operator. However, effective Hamiltonians stock the inform
tion in the modified Hamiltonian matrix, and therefore w
can obtain a good approximation toE0 by calculating the
mean value of theH1D matrix, ^C̃0uH1DuC̃0&, C̃0 being
‘‘good-enough’’ SD wave function. We can take, for in
stance, a~SC!2SDCI wave function as it has been made b
some of us previously, and will be thereafter named
^SDCI@TQ#f&.

35 This involves no more than one iteration o
the CC procedure and it is accurate enough to yield values
E0 which, at equilibrium geometries, are in general bett
than CCSD~T! values.

H. Practical implementation

This method has been implemented in the framework
the algorithm recently proposed by Maynau and Heully57 to
calculate the perturbation of the triples and quadruples ov
the SDCI space. This algorithm demonstrates that it is mu
more rapid to perform an outer loop over the triples an
quadruplesFa than to generate the appropriateFa’s from all
couples (F i ,F j ).Thus, for eachFa , we obtain all the
couples (F i ,F j ) contributing to it, we determine the coeffi-
cientca from the coefficientsci andcj , and then the contri-
bution of Fa to the dressingD i andD j of all the couples
(F i ,F j ).

The algorithm proceeds as follows:

~1! Start: A conventional SDCI to get the initialci ’s.
~2! Loop over Triples and Quadruples:

Calculation ofca;
calculation ofD.

~3! Building and diagonalization ofH1D.
~4! Comparison of theE0 with the previous value. If

convergence is not achieved, one comes back to
with the newci ’s.

If only the dressing of the doubles by the quadruples is tak
into account the algorithm results in an iterative CCD diag
nalization scheme. If the unlinked contributions to the triple
are included too, the dressing of the singles by the triples
taken into account, and then the algorithm results in an ite
tive CCSD diagonalization scheme. The inclusion of th
linked contributions to the triples~and the EPV’s! by means
of the Epstein–Nesbet partition results in a method similar
CCSDT-1a, which we name as SDCI@TQ#f ~or
SDCI@TQ#f1EPV! always in a form of iterative diagonaliza-
tions. EPV’s have been implemented through the introdu
tion of one-, two-, and three-dimensional arrays,29 which is
based on a previous work on the infinite summation of EP
diagrams.53

The algorithm in its present form has the following ad
vantages:

~1! It converges even where conventional CCD, CCSD
and CCSD~T! does not, for instance, at large inter
atomic distances in a single or two single bond di
sociation process.
No. 7, 15 August 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Differences~millihartrees! with FCI energies in BH~DZ! and H2O ~DZ and DZP!.

BH ~DZP! H2O ~DZ! H2O ~DZP!

Method Re 1,5Re 2 Re Re 1,5Re 2 Re Re 1,5Re 2 Re

CCSDa 1,78 2,64 5,04 1,79 5,59 9,33 4,12 10,16 21,4
SDCI@TdcQ#f 1,78 2,64 5,03 1,79 5,59 9,55 4,12 10,16 21,5
CCSD~T! 0,41b 0,55b 0,41b 0,57 1,47 27,70 0,72b 2,00b 24,64b

CCSDT-1aa 0,45 0,61 0,72 0,45 1,46 25,58 0,60 1,99 22,65
SDCI@TQ#f 20,15 20,34 21,22 0,06 20,38 215,11 20,29 21,04 214,47
SDCI@TQ#f1EPV 20,07 20,18 20,68 0,11 0,11 210,29 20,14 20,25 29,70
SDCI@TQ#f ~MP! 0,46 0,63 1,02 ••• ••• ••• 0,60 2,01 22,51
CCSDTa 0,06 0,02 0,02 0,44 1,52 21,87 0,53 1,83 22,17
CC5SD~TQ*!c 0,05 0,01 20,59 ••• ••• ••• 0,19 0,13 21,96
CCSDTQd 0,00 0,00 10,00 ••• ••• ••• 0,02 0,14 20,02

aReference 16.
bReference 14.

cReference 48.
dReference 49.
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~2! At equilibrium distances the number of iterations
converge within 1mH is typically of 4 to 6.

~3! Its possibility to take benefit of the parallel machine
Slave processors can calculate independently
contributions of different triples or quadruples
Dressing matrixD.58 Moreover, a parallel algorithm
to diagonalize large matrices is in progress. Thus,
possibility to calculate very large systems, or to u
very large basis sets is open.

The main disadvantage of this algorithm in its pres
implementation is that it grows asn8, although it could take
benefit of the same reduction ton6 or n7 that can be achieved
on CCSD or CCSDT-1a methods.19 Test calculations on
H2O with a DZ basis set shows that the present implem
tation of the SDCI@TQ#f is three times faster than fu
CCSDT, but three times slower than CCSDT-1a one, the
calculations being performed with the Scuseria’s series
programs.59

IV. NUMERICAL RESULTS AND DISCUSSION

We have applied our methodology to a few exampl
Two of them are classic comparisons with benchmark ca
lations, the other two refer to 4-electron systems previou
presented:36 the square to rectangular deformation of t
H4 system, and the breaking of a single bond in presenc
an electron pair, in the T-shaped Li4 system. These system
represent situations where a degeneracy appears bet
F0 and one of the doubles. We present also the results
another 4-electron system which dissociates into two clo
shell atoms, the Be2 molecule.

A. Benchmark calculations: BH and H 2O molecules

As a first application of the method we have conside
the BH molecule. The reference calculations are those D
FCI ones atRe from Ref. 60, and at 1,5Re and 2Re from
Ref. 16. The second application concerns to H2O molecule
with a double-z ~DZ! and double-z plus polarization basis se
~DZP!. Comparisons are made with the benchmark calcu
tions at DZ FCI level atRe by Saxeet al.,61 and at 1,5Re
J. Chem. Phys., Vol. 103Jan¬2010¬to¬147.156.182.23.¬Redistribution¬subjec
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and 2Re by Harrisonet al.,60 and at DZP level the frozen
core FCI calculations at the same three distances
Bauschlicheret al.62 The differences in mH relative to FCI
values are shown in Table I. The values for conventional C
methods are taken from Refs. 14, 16, 48, and 49. The p
turbative inclusion of the triples in an iterative manner, b
means of the Epstein–Nesbet partition~results marked as
SDCI@TQ#f) shows the trends expected from this approac
Since higher order effects are included, the correlation ene
gies lies under the FCI value in almost all the cases cons
ered. However, the values at short distances are closer to F
than the corresponding Mo¨ller–Plesset CCSDT-1a ones. In-
clusion of the EPV higher order effects makes the resul
~named as SDCI@TQ#f1EPV! closer to FCI. In fact, at short
distances, the SDCI@TQ#f1EPV results are comparable to full
CCSDT ones. However, at 2Re , both SDCI@TQ#f and
SDCI@TQ#f1EPV methods give values far from FCI results.
Table I shows also the DZP results for BH and H2O mol-
ecules when the linked contributions to triples are taken in
account within the Mo¨ller–Plesset partition, marked as
SDCI@TQ#f ~MP! . It is to note that the results of
SDCI@TQ#f ~MP! calculations are almost identical to
CCSDT-1a ones near the equilibrium distances. At long di
tances the differences can be related to the different tre
ment of theT1 terms. When one takes into account only th
effects of the nonlinked contributions to triples and qua
druples~named as SDCI@TdcQ#f), the values obtained atRe

and 1,5Re are the same as those obtained with CCSD, b
small differences appear at 2Re in the water molecule. These
differences could be related with the absence of terms i
cluding powers ofT1, which are important when polar single
bonds are simultaneously broken.

B. The rectangular to square H 4 problem

This model problem has been a critical test for man
methods, especially for CC methods.63–65Along the rectan-
gular to square transformation for H4 system a degeneration
appears between theF0 determinant and another doubly ex-
cited determinant. Geometry has been explicited elsewhere36

The calculations have been performed with a double-z basis
set. Table II shows the energy differences relatives to FC
, No. 7, 15 August 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Rectangular H4 system in a double zeta basis set as a function ofR ~bohr! for r51.40158 bohr. FCI
energies in hartrees and differences to FCI in millihartrees.

R E~FCI! SDCI@TQ#f SDCI@TQ#f1EPV ^SDCI@T#p@Q#f& CCSD~T! QSDCI~T!

1,20 21,793989 0,00 0,01 0,05 0,16 0,17
1,24 21,802647 20,02 0,00 0,07 0,23 0,24
1,28 21,810103 20,06 20,02 0,11 0,34 0,35
1,32 21,817367 20,18 20,11 0,16 0,48 0,51
1,36 21,826043 20,54 20,39 0,17 0,45 0,54
1,40 21,838209 21,42 21,11 20,13 21,04 20,77
1,40158 21,838784 21,47 21,15 20,16 21,17 20,89
1,42 21,846002 21,01 20,77 0,03 20,13 0,05
1,44 21,854827 20,65 20,49 0,11 0,32 0,43
1,46 21,864440 20,42 20,31 0,13 0,43 0,50
1,48 21,874579 20,28 20,19 0,12 0,42 0,47
1,50 21,885016 20,19 20,12 0,11 0,38 0,41
1,52 21,895580 20,13 20,08 0,09 0,33 0,35
1,54 21,906151 20,09 20,05 0,08 0,28 0,29
1,56 21,916645 20,06 20,03 0,07 0,24 0,25
1,58 21,927007 20,04 20,02 0,06 0,21 0,21
1,60 21,937201 20,03 20,01 0,06 0,18 0,18
1,80 22,027364 0,00 0,01 0,03 0,07 0,07
2,00 22,096821 0,00 0,01 0,03 0,04 0,04
2,20 22,149662 0,00 0,01 0,02 0,03 0,03
2,40 22,189660 0,00 0,01 0,02 0,02 0,02
2,60 22,219768 0,00 0,00 0,02 0,02 0,02
2,80 22,242283 0,00 0,00 0,02 0,01 0,02
20,00 22,303002 0,01 0,01 0,00 0,00 0,00
he
values in millihartrees calculated at SDCI@TQ#f ,
SDCI@TQ#f1EPV, and ^SDCI@T#p@Q#f& levels of theory and
compared with the CCSD~T! and QSDCI~T! values for dif-
ferent intermolecular distancesR. All these results are also
J. Chem. Phys., Vol. 103Jan¬2010¬to¬147.156.182.23.¬Redistribution¬subjec
displayed in Fig. 4. The behaviour of the SDCI@TQ#f and
SDCI@TQ#f1EPV methods is very similar, with the
SDCI@TQ#f1EPV values slightly closer to FCI results. At the
degeneracy point, all the iterative methods give nearly t
FIG. 4. Energy differences in mH relative to FCI in the H4 problem in a double-z basis set, as a function ofR for r51.40158 a.u.
, No. 7, 15 August 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. T-shaped Li4 system in an ANO [2s,1p] basis set as a function of the axial bond length,R ~in
bohr!. FCI energies in hartrees and differences to FCI in millihartrees.

R E~FCI! SDCI@TQ#f SDCI@TQ#f1EPV CCSD~T! QSDCI~T! ^SDCI@T#p@Q#f&

4,00 229,772243 20,31 20,11 ••• ••• 0,16
4,40 229,783253 20,30 20,11 ••• ••• 0,13
4,80 229,789148 20,31 20,10 0,49 ••• 0,10
5,00 229,790673 20,31 20,11 0,51 0,49 0,09
5,20 229,791469 20,32 20,10 0,53 0,51 0,09
5,40 229,791674 20,33 20,10 0,55 0,53 0,08
5,60 229,791404 20,34 20,10 0,57 0,55 0,07
5,80 229,790761 20,35 20,10 0,60 0,57 0,07
6,00 229,789830 20,36 20,10 0,63 0,60 0,07
6,20 229,788681 20,38 20,10 0,66 0,63 0,07
6,40 229,787375 20,40 20,10 0,69 0,67 0,08
6,60 229,785964 20,42 20,10 0,73 0,71 0,08
6,80 229,784489 20,44 20,10 0,77 0,75 0,08
7,00 229,782986 20,48 20,10 0,81 0,79 0,09
7,20 229,781484 20,51 20,10 0,86 0,84 0,09
7,40 229,780007 20,56 20,11 0,91 0,89 0,09
7,60 229,778575 20,61 20,11 0,96 0,94 0,09
7,80 229,777203 20,68 20,12 1,01 0,99 0,09
8,00 229,775901 20,75 20,13 2,52 1,04 0,08
9,00 229,770660 21,32 20,25 3,31 1,24 20,05
10,00 229,767460 22,17 20,46 1,19 1,22 20,35
20,00 229,763831 27,94 21,67 a a 22,97
40,00 229,763798 28,92 21,73 a a 23,32
100,00 229,763798 29,68 21,76 a a 23,54

aMethod does not converge.
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same error~0,9 to 1,5 mH!, but for all other distances, out o
theR5r point, the SDCI@TQ#f and SDCI@TQ#f1EPVmethods
remain closer to FCI values than CCSD~T! and QSDCI~T!
ones. Moreover, their behaviour is also more regular, sin
the deviation from FCI has the same sign for all values ofR.
The shape of the error curve for the mean val
SDCI@TQ#f method (̂ SDCI@T#p@Q#f&),

35 is similar to that of
CCSD~T! or QSDCI~T! ones, but its mean error is smalle
We point out that, for this system the errors reported in t
present work, in the degeneracy region, are larger than th
obtained from the SDCI@TQ#p methods,

36 where the coeffi-
cients of the triples and quadruples are estimated pertu
tively. At the degeneracy point (r5R) these errors were 0,5
mH for the method SDCI@TQ#p and 0,09 mH for the method
SDCI@TQ#p1EPV. The small errors in SDCI@TQ#p1EPV

method could be explained because in it, higher-order E
corrections are included for all contributions to triples an
quadruples.

C. The T-shaped Li 4 cluster

The geometric parameters describing the breaking o
single bond in the T-shaped Li4 cluster four electron system
have been described in the previous work.36 Calculations
have been carried out with a DZP [2s,1p] ANO’s basis
set.66 The values for the four electron FCI total energy an
the differences from the FCI values are shown in Table
and in Fig. 5 the potential energy curve for the dissociati
process is displayed. The errors of the SDCI@TQ#f method
with relation to FCI are of the same order or somewhat les
than those of CCSD~T! or QSDCI~T! methods, although of
opposite sign, due to the Epstein-Nesbet choice of the ze
J. Chem. Phys., Vol. 103,¬Jan¬2010¬to¬147.156.182.23.¬Redistribution¬subject
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order Hamiltonian. When higher order EPV corrections ar
included in the linked contributions to triples, the errors fal
to 20,1 mH in almost all the range of values ofR. Note here
the convergence of our algorithm, based on iteratively diago
nalizing a dressed SDCI matrix, by comparison with CC o
QCI methods which fail to converge for large values ofR.
SDCI@TQ#f curve~Fig. 5! shows the typical behaviour of the
CC dissociation curves, where dissociation limit lies far be
low the FCI dissociation limit. The EPV terms avoid the
most of this deficiency, since they increase the resistance
the degeneracies occurring at long bond distances.

D. The Be2 molecule

Be2 molecule is a very challenging system for theoretica
methods.37,67 Despite the closed shell character of the Be
atom, a true chemical bond is formed between two Be atom
at short distances.68 Most of the theoretical methods fail to
represent this bond, and a good basis set is necessary.67 Fig-
ure 6 shows the potential energy curves calculated with fou
electrons and a [3s,2p,1d] ANO basis set,66 and FCI,
CCSD~T! and the SDCI@TQ#f methods. The FCI energies
and the differences to FCI energies for these methods a
shown in Table IV. The more striking feature is the inability
of the CCSD~T! method to merely reproduce a bond between
the two atoms with this basis set. The importance of th
linked triples is very large for this system, and they are in
cluded by means of a MP single calculation in CCSD~T!
method. If the linked triples are taken into account by an
iterative EN procedure, as in the SDCI@TQ#f method, the
main well at short lengths appears, but the bond is overes
mated, and the minimum well is too deep. When higher
No. 7, 15 August 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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Dow
FIG. 5. Evolution of the energy in the T-shaped Li4 problem in a [2s,1p] ANO basis set, as a function of the lengthR of the axial bond.
e

order EPV’s are included, as in the SDCI@TQ#f1EPV method,
the resulting curve is almost identical to the FCI one, and
errors, nearRe , are equal to 0,02 mH or smaller, 2 orders
magnitude less than CCSD~T! ones. At long distances, th
J. Chem. Phys., Vol. 103nloaded¬29¬Jan¬2010¬to¬147.156.182.23.¬Redistribution¬subjec
the
of

three methods converge towards the FCI dissociation limit. It
is to note thê SDCI@T#p@Q#f& results, which are fairly par-
allel to the FCI curve, although the errors at the dissociation
limit are somehow larger that in the minimum region.
FIG. 6. Evolution of the energy in the Be2 molecule in a [3s,2p,1d] ANO basis set, as a function of the bond length,R.
, No. 7, 15 August 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE IV. Be2 molecule in an ANO [3s,2p,1d] basis set as a function of the internuclear distance,R ~in
bohr!. FCI energies in hartrees and differences to FCI in millihartrees.

R E~FCI! SDCI@TQ#f SDCI@TQ#f1EPV CCSD~T! ^SDCI@T#p@Q#f&

4 229,229824 20,92 20,12 1,51 0,23
4,4 229,235853 20,73 20,08 1,36 0,30
4,8 229,237368 20,54 20,04 1,15 0,39
5 229,237467 20,46 20,02 1,03 0,43
5,2 229,237414 20,39 20,01 0,92 0,46
5,6 229,237227 20,28 0,00 0,71 0,50
6 229,237140 20,21 0,00 0,53 0,52
7 229,237231 20,10 0,00 0,25 0,54
8 229,237255 20,05 0,00 0,12 0,55
9 229,237158 20,02 0,00 0,06 0,55
10 229,237044 20,01 0,00 0,03 0,55
12 229,236905 0,00 0,00 0,01 0,54
14 229,236853 0,00 0,00 0,00 0,54
16 229,236834 0,00 0,00 0,00 0,54
20 229,236824 0,00 0,00 0,00 0,54
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V. CONCLUDING REMARKS

Within the intermediate Hamiltonian framework, w
have formulated a total dressing of a SDCI Hamiltonian m
trix for a closed-shell single reference. The present formu
tion, more general than CI or CC methods, includes these
particular cases, and allows an easy extension of the
series. Also, the flexibility in the definition of the dressin
matrix allows for the definition of mixed approximate
methods or selected CC-like methods. Moreover, the po
bility of dealing with MRCI matrices open the door fo
MR-CC-like formalisms. Since the method proceeds by
agonalization of the SDCI matrix, the effect of the qu
druples and the triples on all the single and doubly excit
determinants includes an infinite partial summation of high
order diagrams. An estimation of the coefficients of the no
linked triples and quadruples in a coupled cluster fash
results in an iterative method which includes all the four
order, and which differs from the CCSD method in the la
of the terms including third and fourth powers of theT1 ~or
C1) operator. If the linked contributions to triples are in
cluded perturbatively, the resulting method is similar to t
previous CCSDT-1a, but differing in the Epstein–Nesb
choice of the unperturbed Hamiltonian. This difference
evidenced in the slight overestimation of the correlation e
ergy, which is a characteristic of this choice. Inclusion
higher order EPV’s correction is trivial in EN framework
and the resulting method compares well with CCSDT exc
for long distances when two single bonds are broken sim
taneously, as in the H2O dissociation process. The numeric
stability of the algorithm is also remarkable, based in
hermitian row and column dressing and the diagonalizat
of a SDCI dressed matrix, which allows it to converge ev
when traditional CC algorithms cannot. The present imp
mentation of this algorithm involves a loop over all th
triples and quadruples, and therefore the time of calculat
grows asn8. However, it has been completely parallelize
and it could take benefit of the same intermediate summ
tions which make CCSD an6 algorithm. Numerical applica-
tions on some model systems show that the combination
J. Chem. Phys., Vol. 103Jan¬2010¬to¬147.156.182.23.¬Redistribution¬subjec
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EN zeroth order Hamiltonian and EPV higher order correc
tions give very good estimations of the FCI correlation en
ergy.
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