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This paper presents a new self-consistent dressing of a singles and doubles configuration interaction
matrix which insures size-consistency, separability into closed-shell subsystems if localized
molecular orbital§yMOs) are used, and which includedl fourth order corrections. This method

yields, among several schemes, a reformulation of the coupled cluster method, including fully the
cluster operators of single and double excitations, and partially those of the ttRéetett's
algorithm named CCSDT-laFurther improvement can be easily included by adding exclusion
principle violating corrections. Since it leads to a matrix diagonalization, the method behaves
correctly in case of near degeneracies between the reference determinant and some doubles. Due to
its flexibility this formulation offers the possibility of consistent combination with less expensive
treatments for the study of very large systems.1@95 American Institute of Physics.

I. INTRODUCTION impressing®®3 specially when a direct selected ClI algorithm
is used*

The size-consistency requirement is a fundamental as-  The method was derived in terms of the intermediate
pect of the quantum many-body problénfWhile truncated Hamiltonian Theory® (a generalization of effective
configuration interactiongCl) are variational and suitable Hamiltoniang®), but it may be seen as the most exact CEPA
for rational and flexible selections, they are notgcheme when the model space is the SDCI space or as a

size—corésilszten'iA more correct scheme is the coupled clus-generalized CEPA scheme for arbitrary Cl's. It insures the
ter (CC)°™"“ expansion. At its singles and doubles approxi-strict separability of the energy

mation (CC-SD), it ignores part of the triples and thus does

not insure the Rayleigh—Schtimger fourth order. The com- Epp—Ea+Eg  when rpg—o (1)
plete inclusion of the triples is rather expensive, and thus

perturbative treatments of the triples are frequently proposetbr the separation of aAB system intoA andB closed shell
(CCsOT)),* 1 although they do not behave properly when subsystems provided that localized MO’s are used. The
single bonds are broken. Although the full CCSDT modelmethod consists iadding unlinkeceffects of the outer space
has been develop&'® the calculations performed keep onto the diagonal energies in order to cana#lunlinked
rather illustrative character due to the cost of the methodterms produced by the diagonalization. Of course, if the
Moreover, since the CC equations are nonlinear, they mushodel space consists in the SDCI space, the linked contribu-
be solved iteratively. The numerical algorithms for solvingtions of triples and quadruples are not taken into account so
sets of nonlinear equations suffer for risk of poor conver-that the method is poorer than CC-SD which correctly treats
gence and require rather large number of iteratfSr8. the linked contribution of the quadruples.

Somewhere in between Cl and CC one must mention the The linked effects of the triples and quadruples have
approximate size-extensive CEP@&oupled electron pair been added ondea posteriorias the mean value of an ad-
approximatiop?'~2® and CPF (coupled pair functioff’?®  ditional dressing operator, taken on the vector resulting from
models, which exist in several versions and are essentiallihe (SC)?SDCI. Actually, this was an approximate applica-
based on a single reference and truncation to double excitéion of a fundamental idea, namely the total dressing of the
tions, plus an approximate cancellation of the unlinked cormodel space by the linked and unlinked effects of the outer
rections. space.

In a previous work? the size extensivity of the lowest The preceding pap&thas presented a simple definition
root of any selected Cl has been obtained by a proper dressf a diagonal dressing in terms of the coefficients of the
ing (or changg of the diagonal energies of the Cl matrix. desired vector on the outer space determinants, together with
This dressing is self-consistent, depending on the coefficientsvo perturbative evaluations of these coefficiefatsd there-
of the doubles, so that the method has been labeletbre of the dressing The test calculations were convincing,
(SO)2CI (size-consistent self-consistent)Clts implementa-  especially when high-order exclusion principle violating
tion is straightforward with negligible extra costs in terms of (EPV) corrections were included. The present paper explores
memory and computation time, and the efficiency is reallythe possibility to replace these perturbative evaluations of the
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dressing by coupled cluster type estimates, which are exar simply, restricted to the model space:

pected to behave more satisfactorily when near degeneracies V=Ac (10)
occur in the model space. A formulation is found, which is '
equivalent to CCSD method, if only the unlinked contribu- ~ This equation is not sufficient to defink. Of course,
tions to triples and quadruples are taken into account, oA might be a full square matrix as occurs in the partitioning
analogous to CCSDT-1%38 if the linked contributions to  technique®®~*?However, it is sufficient to define the dress-
Triples are perturbatively accounted for. Therefore, theng throughn matrix elements only since there are omly
method insures the strict separability into closed shell subdegrees of freedorfll eigenenergyn-1 coefficients.

systems when localized MO's are used. Although leading to

a matrix built on the SDCI space, the method treats all thes. Dressing formulations

fourth order effects of the tripl d quadruples. .
ourth orcer efiects ot the friples and quadruples One possibility is the diagonal dressfrig

Aij= A 6ij, 11
Il. SELF-CONSISTENT INTERMEDIATE HAMILTONIAN
WITH HERMITIAN DRESSINGS _

Ai=c 12 e @7 D,). (12
A. Matrix formulation of the intermediate Hamiltonians ¢S

We shall not recall the definition and advantage of inter- _ This solution has the drawback of the division by
mediate Hamiltonian® We suppose that we only search the which may lead to nqmerlcal mstgbllltles and the po§5|ble
exact energy and the projection of the exact eigenvector ont@PPearance of physically meaningless eigenenergies of
the model space of a single root, this eigenvector having thE(H+A)P below the relevant rooty. _
largest amplitude on thmain model space determinad, Two ff us have proposed elsewhere a first column
(or reference determinanfThe intermediate model space is dressing® concerning the elementsb;|A|®g)
spanned byat least all the determinants; interacting with
®,. Thus,®, and all the®; built the model spac8. Then, (Di]A|Dg)= 2 co(®i].7]D,) (13
if P is the projector on the model spage «eS

which does not lead to such numerical troubles but which is

p:|¢o><¢o|+2 |D WD, (2)  non-hermitian. '
ieS We strongly recommend a new formulation of the dress-
it leads to the diagonalization of the dressed matrix ing concerning_the_ first_ column and first row only. The first
column of A is identical to the preceding except for
P(H+A)P, () (®|A|Dy), the dressing is made hermitian taking
whereA is the dressing operator. (Do|A|D))=(D|A|Dy), (14)

If we define Q=1—P as the projection on the outer )
space, anct as the vector of the coefficients of the exact@1dAoo is then calculated as

eigenvector:
Ago=(Do|A|DPg) = 2;48 Ca<¢0|-—%’1¢a>_i$0 ci{Di|A[Dg).

Vo=Do+ > ¢®i+ D ¢, D, 4) (15)
ieS agS

- . o _ These relations are easily obtained from the matrix multipli-
the exact Schminger equation Z— £,)¥,=0 may be cation of the first row ofA by c.

written for the rows associated to the model space in a ma: .
In the case where the model space includes all the deter-

tricial formulation: . . . i . o
minants interacting wittib, the first summation is zero, and

PHPc— £,P1Pct+ PHQc=0. (5)
The last termPHQc is a vectorV the elements of which Ago= —#20 Ci{Di[A|Dg). (16)
are
This formulation is hermitian and has shown to be numeri-
Vi= 3 ol 7e,) (6 cally stable.
agS
so that Eq.(5) may be written C. Estimation of the coefficients of the outer space
PHPc— Z,P1Pc=—V. (7) All these formulations remain academic as far as the

coefficients on the outer space are unknown. Of course, in
practice they can be approximately evaluated from the
[P(H+A)P— #,P1P]|Pc=0. (8) knowledge of thec;’s. Therefore these dressings require

achieving a self-consistency condition. In the preceding

The condition under which the above equation wil pro- apef® the coefficientsc, were evaluated perturbatively.

vide the exact energy and the exact components of the eige his means that the coefficients for triple and quadruple ex-
vector on the model space is that

citations are obtained by a first order perturbation upon a
V=PAPc=APc (9)  vector built on all singly and doubly excited determinants.

The dressed matrix eigenequation is
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U

FIG. 1. (a) Disconnected anth) connected contributions to the coefficients
mmusa of the quadruples.

The use of these,’'s in Eq. (8) gives an energy which is second order perturbation upon a singles and doubles vector.
correct to fourth order and includes important fifth orderThis is, of course, outside the scope of this method. The
terms. The present work will try to improve such a schemedisconnected quadruples should be more important; their en-
by systematically using the factorization theorem which isergy contribution appears at fourth order. By using the fac-
part of perturbation theory. This will transform the precedingtorization theoren{see Ref. 4%one can show that the sum
order-by-order expansion into a self-consistent, all-order apef the two terms of Fig. (), can be rewritten as a product
proach. which by inspection yields the following second order rela-

The following paragraphs will show how such an all- tion
order scheme is obtained, first for the quadruple excitations.
Then the triple excitations will be considered. A comparison  .o_ S el 17)
with the coupled cluster approach will follow. Finally, we o) L
shall show how further improvements can be obtained by . L .
considering the nonadditivity of the denominatttsis addi-  Where €.j) stands for all couples of disjoint double excita-
tivity is implicit in the Moller—Plesset perturbation thegry UONS creating®,, from @,
or by including higher-order terms in the CEPA spirit, but AP H —RFRFd
this time for triple and quadruple excitations. As far as we ©a=Dj Dy @o=Dy Dy Po=--- . (18)
know this is the first time that EPV terms are included for Equation(17), giving the coefficient of quadruples as prod-
excitations higher than single and double ones. ucts of double excitation coefficients, is generalized to an

all-order relation by writing
I1l. COUPLED CLUSTER FORMULATIONS OF SELF-
CONSISTENT INTERMEDIATE HAMILTONIANS o_
Q= > cic;, (19
A. Quadruple excitations (i)
. . . . DrDi+¢)0=¢)a

Up to third order in the wave function, two kinds of
guadruple excitations have to be considered. At the secongthere thec; coefficients are obtained by diagonalization of
order disconnected quadruples appear, the connected ongae dressed Hamiltonian, giving thus a self-consistent itera-
appearing at the next ordésee Fig. 1 tive method.

Regarding the energy, the connected quadruple ampli- From this relation it is very easy to derive approximate
tudes will contribute for the first time at fifth order, and fur- schemes such as “exact CEPA method,” called by us
thermore the coefficieruS cannot be written as a function of (SC)2MRCI and already presented in Ref. 29. These methods

the ¢;'s. They have to be evaluated by perturbation, e.g., avhich considered EPV terms only will not be used here.
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(b)

FIG. 2. (a) Connected angb) disconnected contributions to the coefficients of the triples.

It is obvious that our scheme must have some relation . S/ N(®, | 7D D)
with the coupled cluster method, that writes the amplitude of ¢ °= A (20)
the quadruple excitations as product of double excitation am- @
plitudes. A thorough comparison of both methods will be

whereX’ runs over all the double excitations for which there

given later. . . N + Tty
Comparison should also be done with our previous perls no single excitatiorM, such thatM D; ®o=<, and

turbative schem@ Due to its perturbative character, one of Bqls an energy difference to be defined by the ch_osen_per-
the two double excitations forming the quadruple was de:[urbatwe sghem(al\/lP, EN ..). The se_cond ordgr relation wil
scribed at all-order, whereas the other one was kept at firsﬁe generalized to an all-order relation by writing
order only. We remedy, now, this unsymmetric way of de- , -
scribing quadruple excitations, and thus include further cle— 2ici{®,| #|Di @)
higher terms. It should be noted also that the fact that no “ A,
denominators appear explicitly in this new scheme is cer-

tainly in favor of its convergence properties during the itera-and we have again an iterative scheme which relates the
tions. double and triple excitations.

It should be noted that the generalization is perfectly
well founded. If instead of a pure single reference perturba-
tion theory we used a multireference method, the relation
(21) would be obtained directly.

At variance with quadruple excitations, the connected = Comparison with coupled cluster will show, later, that
amplitudes of the triples appear before the disconnectethis kind of Triple contributions is obtained only by CCSDT
ones. These connected triples will contribute at fourth ordeschemes or some of its approximations.
to the energy whereas the disconnected ones at fifth order Concerning the comparison with our previous method
only (see Fig. 2 there is no direct improvement in the treatment of the con-

The connected triple€T ) coefficients cannot be rewrit- nected triples, however the double-excitation coefficients
ten in terms of the coefficients of the doubles and singles andsed in Eq(21) are of better quality due to the improvement
thus have to be derived by perturbation upon a singly anaf the CS.
doubly excited vector. They are single excitations of double-  The disconnected triplgd ) part comes from the prod-
excitations. ucts of disjoint single and double excitatiojsee Fig. 2)]

(21)

B. Triple excitations
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proper dressingAj=cj_12a¢Scahja can be easily made
equivalent to a full CCSD procedure. This is made clearer
through the equivalence between fhieand C; operators

..... C,=T,, (29
Co=T,+3T%, (30

------- Cy=1iT3+T,T,, (31
FIG. 3. Fifth order energy diagram. C4= 21—4T‘11+ %T§+ %TiTz- (32)

Now takingT; and T, from Egs.(29) and(30) and substi-

Tde MR TH —MTPTH —
® =M Dj ®o=M D/ ®o=--- . (22) tuting them into Eqs(31) and(32), we can write
Calling ¢ the coefficient of the singly excited determi- C.=C.C,— i3 33
nant®;=M®, and using again the factorization theorem 372 s 33
one can show that this sum can be rewritten as C,=1ic2-ict, (34)
cT“°=2 Ci(1>’C}1>, (23)  i.e,, we can rewrite the CCSD, originally based solely on

3

(i) T, andT, amplitudes, in terms af; model space wave func-
where {,j) stands here for the nine couples of single-doubletion coefficients ana,, coefficients.

excitations such that Comparison of Eqs(33) and (34) with our Cch and CS
DM D= (24) Wi|| reveal.thg close rglation between both methods. The
PR difference is given by third and fourth powers@©f operator.
This will be generalized to the obvious form For the triple excitations these terms will contribute at 8th
order of perturbation and for the quadruple ones at the 11th
¢ ldo— > c/c;. (25)  order! So the difference should be very tiny, indeed! These

o

L 0D missing terms can, of course, be included easily in our

D Mi ®0=Pa scheme but this point is not obvious. Comparison with an

By including such terms in the dressing will include fifth all-order expansion will show that these terms are only some
order diagrams in the energy. One of them is shown in Fig. 30f the numerous terms appearing at those orders. There is no

Such terms are automatically included if one uses naturah priori way to say which scheme gives the best “arbitrary
or Brueckner orbitals instead of HF orbit4fs*® Comparison ~ weight” to these powers of; .
with our previous method shows that the single excitation ~ Anyway, in another work! we have included thesg,
coefficient have changed from the first order to an all-ordeipowers in order to show the strict equivalence between both
description. Since no denominators appear explicitly, betteschemes. Nevertheless, it remains a very important differ-
convergence properties can be expected during the iterationgnce in the practicability. Our scheme yields a diagonaliza-

tion of an effective Hamiltoniarfcontaining no energy dif-
C. Comparison with the coupled cluster formalism ferenceg whereas the CCSD scheme is the resolution of a
system of equation@ontaining energy differencesf which
convergence is often improbable.

So far, we have only considered the disconnected terms,
V,=e5h,. (26) it remains to see how coupled cluster includes connected
triple excitations. We have already said that we will not in-
clude connected quadruple excitations but their effects have

Let us expand¥, in Eqg. (4) in a coupled cluste(CC)
type way:

If we take, for instance, the CCSD approximation,

S=T,+T; and been studied by Bartlett*® In order to includeT, one
Wo=Do+ (Ty+ T+ 5T2) Do+ (T, T+ 273+ 4727, should use the CCSDT scheme. Such a procedure will, in-
o 14 deed, include the connected triples but also numerous higher-

+32T2+ 5T Po. (270 order terms yielding a method which goes ras*84° For

Written in this way, it is easy to see that each of the rightmost of the chemical problems such a high cost is prohibitive
hand terms in Eq(27) has its counterpart in Eq4), for the ~ @nd approximations should be derived. The most radical one
case that the model space in Bd) includes®,, all its would be to decouple th&. amplitudes from theT; and
Singles and all its Doubles. T, ones and to calculate their contributions by a Mé&r-
Now, if we conside¥ , in terms of the Cl wave operator mula, using however iterativ€; and T, amplitudes: this is

13-15 Fni ; i
expansion and we group in the same way all excitations up t§1¢ CCSRT).~ A similar method can be easily obtained
quadruples, with our procedure. More interesting is to keep the coupling

between outer and model space as we do by havingll"rie
o= PoH(CyHCr)Pot(CatCa)®o @8 the iterative procedure.

it follows that the procedure of taking into account the ef- Rewritten in terms of coefficients but in a coupled clus-
fects of the triples and quadruples on the SDCI matrix by a&er manner, we have thg of the model space and
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C3=C1C2+CZ"+(— 1c3), (35) }[/;/]h(;:re @,j) stands for the couples of double excitations such
a
C4=3C3+(—%C1), (36)

the parenthesis meaning that, at convenience, the powers of

C, should or not be included. Including all terms would give

similar equations as CCSDT so the aprroximations are done, (@ ,|7|D;)=(D;|. 7| D), (39

) X : - . .

|anact, in .the equation d.eflnlngF3 orC_°. .Compan.ng our (® | 7| D) =(D;| 7| Do), (40)

C,° equation[Eg. (21)] with the T; equation as given by )

Bartlett” we can see that we include only the first term of @nd since

this complicated equation. In the nomenclature of Bartlett L (|7 Do)

this scheme corresponds to CCSDTEiadowever, in our ci )ZW’ (42)

approach we are free to define the denominator of (Ed). o

by taking MP or EN method or to further improve this de- 1) (@[ 7| Do)

nominator by using CEPA arguments. ¢ :W ' (42
So, in conclusion, we will say that both methods are !

quite similar but that we are working with wave function replacingg; for ¢ (i.e. a variational evaluation of the co-

coefficients and thus diagonalizing, whereas the CC apefficients of the doubles for the perturbative pnég. (37)

proach uses amplitudes of excitations and must solve quitBecomes

complicated syst.ems of equations.. Due to the fact. t_hat, E(i,j)CiCj[(Eg—E?H(ES—E?)]

nowadays, the diagonalization algorithms are very efficient ¢Q= 0

and can be made dirett® we think that our formulation S

opens the road to very efficient Direct methods as we pro-  In a more compact notation, calling the energy differ-

D, ®y=a,. (38)

. (43

pose in the present work, or to very efficient CCST- ences,

D. Proposed nomenclature ngz(i'”CiCAi(AiJrAi) (44)
The acronyms used in this work, which have been de- o o

signed in order to take into account the great flexibility of tne@nd similarly for the triples

dressed intermediate Hamiltonian method, first indicate the Celed(A _
. . R . .. . R T E(I,J)Cl C](A|+A])

Hamiltonian matrix which is iteratively dressed and diago- cad°= . (45)

nalized, say SDCI. Then, in rectangular braces, the terms e
included in the dressing:4f and Q for disconnected triples This formulation will of course use the Epstein—Nesbet
and quadruples, respectively, and T for both connected andefinition of.7%, as the diagonal of the Hamiltonian Cl ma-
disconnected triples. The subindéxstands for “factoriza-  trix.

tion” and p for “perturbation,” as the way of calculating
disconnected terms. Inclusion of higher order EPV terms i
also indicated by adding EPV to subindex. Angular braces
indicate that the mean value of the dressed Hamiltonians has This proposal has already been formulated in the preced-
been taken instead of an iterative diagonalization procedurdg paper for the perturbative dressing of the SDCI matrix by

the triples and quadruplgSDCITQ],, previously labeled

E. Improvements of the SDCI[TQ] TD1). Its justification is based on an earlier wdtkpropos-
ing a method(SC)2Cl, which makes size-consistent any se-

Our proc_:edure can be improv_ed in two ways. First ON8ected CI. The coefficiert, of any triple or quadrupl® , is
should consider that the factorization theorem is only correcgupposed to be obtained by considering a Cl matrix where

if the energies are a}dditive which is impligit W_ith Nier- @ , has been added to the SDCI space. Then the size consis-
Plesset theory. This is a very good approximation, howeve{enCy is obtained by dressingd, by the quantity

there are cases where the nonadditivity can be crucial, as fcg +EPV, whereE,, is the correlation energy and EPV

. . . - - —COorr a corr
example in Solid State Physics. Examples are easily found 'Fbpresents the effect of all double excitations which are im-
molecular problems als. Second, one can think of using possible to perform ok

CEPA arguments in order to improve the description of the
triple and quadruple excitations.

S2. Inclusion of the EPV terms

EPV,=— 2 oo 7|Dy). (46)

1. Nonad(ditivity of the denominators .
Dy ®,=0

If one no longer assumes the energy denominators addi- . _ .
tivity, one may move back to the perturbative evaluation of ~ Then, the eigenequation fdr,, leads to the equation
c, as a sum of contributions as in E@.7), which is trans- Sici(®,|. 7| D)

lated diagrammatically in Fig.(&). Thus, ca=<q) Do) — (D] 7D, )+ EPV,) ° 47
ol-”Z1¥ 0/ al 7O * o @
CQZE("")(C‘<(D“|’%§)‘>+0Ci<q)“|'%]q)i>) ' (37) The denominator including the EPV corrections may be
“ Eo—Ea used for the linked part of triples only, i.e., the perturbative

Downloaded-29-Jan-2010-to~147.156.182.2%. FeMstRHYSonQli O3, Ne: AL B ANELSIoI 998y right; ~see-http://jcp.aip.orglicp/copyright.jsp
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residue in the here proposed SIDOD]; scheme. A direct G. Relation with other methods: Taking the mean
derivation of the use of this denominator may be obtained a¥alue of dressed Hamiltonians

an infinite partial summation of EPV diagrartis. In CC methods, the information about triples and qua-
druples is stocked in the wave function by means ofdhe
F. Further improvements operator. However, effective Hamiltonians stock the informa-

(}ion in the modified Hamiltonian matrix, and therefore we

to the coupled cluster methotfsKutzelnigg pointed out the &N obtain a good approximation 6, by calculating the
necessity to imagine some flexible combinations of coupled€an value of théi+ A matrix, (WolH+A[Wo), Wo being
cluster with lower cost approximations, in order to be able to good-enougg SD wave funcpon. We can take, for in-
treat problems with larger number of electrons and/or Iarge?’tance' 4SG?SDCI wave function as it has been made by

basis sets. Thinking in terms of dressing actually allows ong®Me Of us previously, and will be thereafter named as
to derive a whole series of approximations combining con{SPCITQIr).> This involves no more than one iteration of

sistently different methods of different accuracies and costdN® CC procedure and it is accurate enough to yield values of
“o Which, at equilibrium geometries, are in general better

1. Combination with poorer approximations than CCSDT) values.

Suppose that approximate natural orbitals can be ob-
tained by a low cost calculation of the density matfigr
instance, a MP2 calculatiprThen, it is possible to retain the
most active natural MO&hose of occupation number closer ~ This method has been implemented in the framework of

to ong in a class-1. The dressing of the SDCI matrix may bethe algorithm recently proposed by Maynau and Helllty

done as follows: calculate the perturbation of the triples and quadruples over

— by the (SO2SDCI procedurdtaking into account the the SDCI space. This algorithm demonstrates that_lt is much
more rapid to perform an outer loop over the triples and

Eﬁeigaéheb u?r“enati?nd tgzle; ;Tldd?gsgigupltehse effects of thequadrupIeSI)a than to generate the approprigdtg’s from all
y 9 g couples (b;,®;).Thus, for each®,, we obtain all the

triples and quadruples which only involve holes and particles o : . ,
of the class-1. Then tha’ time-limiting step runs over a couples (b;,®;) contributing to it, we determine the coeffi

smaller number of MOs. cientc, from the coefficientg; andc;, and then the contri-

One may also consider a three-class partition of the NOsbmIon of @, to the dressingy; and A; of all the couples

putting into a class-3 the NOs whose occupation numbers a&e‘bi ll_q;j)' lqorith d foll i

close to 2 or 0. Then the SDCI is reduced to the determinants e algorithm proceeds as follows:

involving only the MOs of class-1 and class-2. The other (1) Start: A conventional SDCI to get the initia]’s.
doubly excited determinants may be treated through the self- (2) Loop over Triples and Quadruples:

consistently dressed independent pair  excitation Calculation ofc,;

approximatior®> A unique vector of all coefficients obtained calculation ofA.

at different levels, is used to define EPV terms and to dress in  (3) Building and diagonalization ofi +A.

a consistent manner the energies of the large SDCI matrix (4) Comparison of theZ, with the previous value. If

In his concluding remarks of a recent workshop devote

H. Practical implementation

and of the small X2 matrices, as already proposed and convergence is not achieved, one comes back to 2
practicec?® with the newc;’s.

If only the dressing of the doubles by the quadruples is taken
2. Higher accuracy approximation into account the algorithm results in an iterative CCD diago-

One may of course dress a SDTCI matrix by the qua_nalization scheme. If the unlinked contributions to the triples
druples and pentuples as was done here for the SDCI matri'® included too, the dressing of the singles by the triples is
but this will be in general impracticable, except if a Iorese_taken into account, and then the algorithm results in an itera-

lection of MOs have been done. It seems more reasonable fiy¢ CCSD diagonalization scheme. The inclusion of the

add the most important triples and quadruples more lInked contributions to the triplegand the EPV’s by means
highly excited determinantgo singles and doubles. Then it of the Epsteln—Ngsbet partition results in a method similar to
is perfectly possible to dress the selected triples and qud&=CSPT-1a,  which we name as SOTQJ (or
druples by the unlinked effects of the pentuples and>PCITQli+epy) always in a form of iterative diagonaliza-
hexuples, as done in tH&C)2CI method. The effect of the tions. EPV’s have been implemented through the introduc-

other triples and quadruples on the singles and doublgdon Of one-, two-, and three-dimensional arrdysyhich is
would then be added, including their linked effect, as pro_based 0253a previous work on the infinite summation of EPV
diagrams.

posed in the present work. The method would be size* ) o )
consistent and would include the effect of the leadigand tThe algorithm in its present form has the following ad-
Mantages:

T, operators at a very moderate cost. This procedure woul
allow to combine a CAS main model space with a (1) It converges even where conventional CCD, CCSD,

CCSDT-1a single reference formalism and would certainly and CCSDT) does not, for instance, at large inter-
be very efficient for the study of multiple bo(®l breaking, atomic distances in a single or two single bond dis-
without entering the complexity of the MRCC methods. sociation process.
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TABLE |. Differences(millihartrees with FCI energies in BHDZ) and H,O (DZ and DZB.

BH (DZP) H,O (DZ) H,O (DZP)

Method Re 15R, 2R, R, 15R, 2R, Re 15R. 2R,
ccsp 1,78 2,64 5,04 1,79 5,59 9,33 4,12 10,16 21,4
SDCI[TyQl; 1,78 2,64 5,03 1,79 5,59 9,55 4,12 10,16 21,5
ccsoT) 04 059 041 057 1,47 -7,70 072 2,00 -464
CCSDT-14& 0,45 0,61 0,72 0,45 1,46 —5,58 0,60 1,99 —-2,65
SDC[TQ]; -0,15 -034 -1,22 006 -038 -1511 -029 -1,04 —14,47
SDCITQ]s 1 gpv -0,07v -0,28 -0,68 0,11 0,112 -10,29 -0,24 -0,25 -9,70
SDCITQls ) 0,46 0,63 1,02 - 0,60 201 -251
CCSDT 0,06 0,02 0,02 0,44 1,52 -1,87 0,53 1,83 -2,17
CC5SOTQ*)° 0,05 0,01 -0,59 0,19 0,13 -1,96
CCSDTQ1 0,00 0,00 +0,00 0,02 0,14 -0,02
aReference 16. ‘Reference 48.

PReference 14. dReference 49.

(2) At equilibrium distances the number of iterations to and 2R, by Harrisonet al,?° and at DZP level the frozen
converge within 1uH is typically of 4 to 6. core FCIl calculations at the same three distances by
(3) Its possibility to take benefit of the parallel machines. g5 schlicheret al®2 The differences in mH relative to FCI
Slave processors can calculate independently thgajyes are shown in Table I. The values for conventional CC
contributions of different triples or quadruples t0 methods are taken from Refs. 14, 16, 48, and 49. The per-
Dressing matrixA.* Moreover, a parallel algorithm — rpative inclusion of the triples in an iterative manner, by
to diagonalize large matrices is in progress. Thus, thgneans of the Epstein—Nesbet partitiresults marked as
possibility to calculate very large systems, or to usespC[TQ];) shows the trends expected from this approach.
very large basis sets is open. Since higher order effects are included, the correlation ener-
The main disadvantage of this algorithm in its presentgies lies under the FCI value in almost all the cases consid-
implementation is that it grows a¥€, although it could take ered. However, the values at short distances are closer to FCI
benefit of the same reductionnd or n” that can be achieved than the corresponding Mer—Plesset CCSDT-1a ones. In-
on CCSD or CCSDT-1a method®.Test calculations on clusion of the EPV higher order effects makes the results
H,O with a DZ basis set shows that the present implementnamed as SDCTQ];,gp\) closer to FCI. In fact, at short
tation of the SDITQ]; is three times faster than full distances, the SDCTQJ, gpy results are comparable to full
CCSDT, but three times slower than CCSDT-1a one, the CCCCSDT ones. However, at R,, both SDCITQ]; and

calculations being performed with the Scuseria’s series 0BDCITQ];. gpy Mmethods give values far from FCI results.
programs>’? Table | shows also the DZP results for BH and@4mol-

ecules when the linked contributions to triples are taken into
account within the Mber—Plesset partition, marked as
IV. NUMERICAL RESULTS AND DISCUSSION SDCITQJ¢p). It is to note that the results of
) SDCITQJsmp) calculations are almost identical to
We have applied our methodology to a few examplesccsprT-1a ones near the equilibrium distances. At long dis-
Two of them are classic comparisons with benchmark calCUgynces the differences can be related to the different treat-
lations, the other two refer to 4-electron systems previously,ant of theT, terms. When one takes into account only the
presented” the square to rectangular deformation of theetects of the nonlinked contributions to triples and qua-
H, system, and the breaking of a single bond in presence foruples(named as SDCT,Q];), the values obtained &,
an electron pair, in the T-shaped,lsystem. These systems 5nq 1 5R_ are the same as those obtained with CCSD, but
represent situations where a degeneracy appears betwegh | differences appear af in the water molecule. These
@, and one of the doubles. We present also the results Ofjitterences could be related with the absence of terms in-
another 4-electron system which dissociates into two Closegluding powers off ;, which are important when polar single
shell atoms, the Bemolecule. bonds are simultaneously broken.

A. Benchmark calculations: BH and H ,O molecules B. The rectangular to square H , problem

As a first application of the method we have considered  This model problem has been a critical test for many
the BH molecule. The reference calculations are those DZPhethods, especially for CC methots®° Along the rectan-
FCI ones atR, from Ref. 60, and at 1,R, and 2R, from  gular to square transformation for,ldystem a degeneration
Ref. 16. The second application concerns tg@OHmolecule appears between thk, determinant and another doubly ex-
with a double¢ (DZ) and doublet plus polarization basis set cited determinant. Geometry has been explicited elsewfiere.
(DZP). Comparisons are made with the benchmark calculaThe calculations have been performed with a doubtesis
tions at DZ FCI level aR, by Saxeet al.®* and at 1,5R,  set. Table Il shows the energy differences relatives to FCI
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TABLE Il. Rectangular H system in a double zeta basis set as a functidR @fohr for r =1.40158 bohr. FCI
energies in hartrees and differences to FCI in millihartrees.

R E(FC)  SDC[TQ}  SDCITQl.epy  (SDCITL[Q)) CCSDT)  QSDCKT)
1,20 —1,793989 0,00 0,01 0,05 0,16 0,17
1,24 —1,802647 -0,02 0,00 0,07 0,23 0,24
1,28 —1,810103 —0,06 -0,02 0,11 0,34 0,35
1,32 —1,817367 -0,18 -0,11 0,16 0,48 0,51
1,36 —1,826043 —-0,54 -0,39 0,17 0,45 0,54
1,40 —1,838209 —-1,42 -1,11 -0,13 —1,04 —-0,77
1,40158 —1,838784 —-1,47 -1,15 -0,16 -1,17 -0,89
1,42 —1,846002 -1,01 -0,77 0,03 -0,13 0,05
1,44 —1,854827 -0,65 —-0,49 0,11 0,32 0,43
1,46 —1,864440 -0,42 -0,31 0,13 0,43 0,50
1,48 —1,874579 -0,28 -0,19 0,12 0,42 0,47
1,50 —1,885016 -0,19 -0,12 0,11 0,38 0,41
1,52 —1,895580 -0,13 -0,08 0,09 0,33 0,35
1,54 —1,906151 -0,09 -0,05 0,08 0,28 0,29
1,56 —1,916645 —0,06 -0,03 0,07 0,24 0,25
1,58 —1,927007 —-0,04 -0,02 0,06 0,21 0,21
1,60 —1,937201 —-0,03 -0,01 0,06 0,18 0,18
1,80 —-2,027364 0,00 0,01 0,03 0,07 0,07
2,00 —2,096821 0,00 0,01 0,03 0,04 0,04
2,20 —2,149662 0,00 0,01 0,02 0,03 0,03
2,40 —2,189660 0,00 0,01 0,02 0,02 0,02
2,60 —2,219768 0,00 0,00 0,02 0,02 0,02
2,80 —2,242283 0,00 0,00 0,02 0,01 0,02
20,00 —2,303002 0,01 0,01 0,00 0,00 0,00

values in millihartrees calculated at SOTQ];, displayed in Fig. 4. The behaviour of the SPUD]; and
SDCITQls+epv» and (SDCIT],[Q];) levels of theory and SDCITQJi,gpy mMmethods is very similar, with the
compared with the CCSD) and QSDC(T) values for dif- SDCI[TQI;, gpy Values slightly closer to FCI results. At the
ferent intermolecular distancd®. All these results are also degeneracy point, all the iterative methods give nearly the

E (mH)
1

..... o-- SDCI[TQIf
—O— SDCI[TQ]f+EPV
--A-- <SDCI[T]p[QIf>
- CCSD(T)

—-%-- QSDCI(T)
]

L5 1,6
R (Bohr)

1,2 1,3

FIG. 4. Energy differences in mH relative to FCI in thg problem in a doubl€-basis set, as a function & for r =1.40158 a.u.
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TABLE lll. T-shaped Lj system in an ANO [8,1p] basis set as a function of the axial bond lend@(in
bohn. FCI energies in hartrees and differences to FCI in millihartrees.

R E(FCI) SDCI[TQ];  SDCITQJ;+gpy CCSOT)  QSDCKT)  (SDCIT],[Q])
4,00 —29,772243 -0,31 -0,11 0,16
4,40 —29,783253 —0,30 -0,11 0,13
4,80 —29,789148 -0,31 -0,10 0,49 0,10
5,00 —29,790673 -0,31 -0,11 0,51 0,49 0,09
5,20 —29,791469 -0,32 —0,10 0,53 0,51 0,09
5,40 —29,791674 -0,33 —0,10 0,55 0,53 0,08
5,60 —29,791404 -0,34 —-0,10 0,57 0,55 0,07
5,80 —29,790761 —0,35 —0,10 0,60 0,57 0,07
6,00 —29,789830 —0,36 —-0,10 0,63 0,60 0,07
6,20 —29,788681 —0,38 -0,10 0,66 0,63 0,07
6,40 —29,787375 —0,40 —-0,10 0,69 0,67 0,08
6,60 —29,785964 —-0,42 -0,10 0,73 0,71 0,08
6,80 —29,784489 —0,44 —-0,10 0,77 0,75 0,08
7,00 —29,782986 —0,48 —-0,10 0,81 0,79 0,09
7,20 —29,781484 -0,51 -0,10 0,86 0,84 0,09
7,40 —29,780007 —0,56 -0,11 0,91 0,89 0,09
7,60 —29,778575 -0,61 -0,11 0,96 0,94 0,09
7,80 —29,777203 —0,68 -0,12 1,01 0,99 0,09
8,00 —29,775901 -0,75 -0,13 2,52 1,04 0,08
9,00 —29,770660 -1,32 —0,25 3,31 1,24 —0,05
10,00 —29,767460 —2,17 —0,46 1,19 1,22 -0,35
20,00 —29,763831 —7,94 —1,67 a a —2,97
40,00 —29,763798 —8,92 -1,73 a a -3,32
100,00 —29,763798 —9,68 —-1,76 a a —3,54

aMethod does not converge.

same errof0,9 to 1,5 mH, but for all other distances, out of order Hamiltonian. When higher order EPV corrections are
theR=r point, the SDAITQ]; and SDC[TQ]; . gpy methods included in the linked contributions to triples, the errors fall
remain closer to FCI values than CCAD and QSDC(T) to —0,1 mH in almost all the range of valuesRf Note here
ones. Moreover, their behaviour is also more regular, sincéhe convergence of our algorithm, based on iteratively diago-
the deviation from FCI has the same sign for all valueRof nalizing a dressed SDCI matrix, by comparison with CC or
The shape of the error curve for the mean valueQCl methods which fail to converge for large valueskRof
SDCITQ]; method (SDCI[T]p[Q]f)),35 is similar to that of SDCITQJ; curve(Fig. 5 shows the typical behaviour of the
CCSIOT) or QSDCIT) ones, but its mean error is smaller. CC dissociation curves, where dissociation limit lies far be-
We point out that, for this system the errors reported in thdow the FCI dissociation limit. The EPV terms avoid the
present work, in the degeneracy region, are larger than thosaost of this deficiency, since they increase the resistance to
obtained from the SDETQ], methods’® where the coeffi- the degeneracies occurring at long bond distances.

cients of the triples and quadruples are estimated perturba-

tively. At the degeneracy point ER) these errors were 0,5
mH for the method SDCTQ], and 0,09 mH for the method
SDCITQlp+epy- The small errors in SDCTQ], . gpy Be, molecule is a very challenging system for theoretical
method could be explained because in it, higher-order EPVnethods’’®” Despite the closed shell character of the Be
corrections are included for all contributions to triples andatom, a true chemical bond is formed between two Be atoms
quadruples. at short distance® Most of the theoretical methods fail to
represent this bond, and a good basis set is nece¥dairy:

ure 6 shows the potential energy curves calculated with four
electrons and a [82p,1d] ANO basis sef® and FCI,

The geometric parameters describing the breaking of £CSDOT) and the SDJITQ]; methods. The FCI energies
single bond in the T-shaped Lcluster four electron system and the differences to FCI energies for these methods are
have been described in the previous wiftkCalculations shown in Table IV. The more striking feature is the inability
have been carried out with a DZP §2p] ANO’s basis of the CCSIT) method to merely reproduce a bond between
set® The values for the four electron FCI total energy andthe two atoms with this basis set. The importance of the
the differences from the FCI values are shown in Table llllinked triples is very large for this system, and they are in-
and in Fig. 5 the potential energy curve for the dissociatiorcluded by means of a MP single calculation in CGEP
process is displayed. The errors of the SP@]J; method method. If the linked triples are taken into account by an
with relation to FCI are of the same order or somewhat lesseiterative EN procedure, as in the SO)TQ]J; method, the
than those of CCS{) or QSDCIT) methods, although of main well at short lengths appears, but the bond is overesti-
opposite sign, due to the Epstein-Nesbet choice of the zerotimated, and the minimum well is too deep. When higher-

D. The Be, molecule

C. The T-shaped Li 4 cluster
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E (Hartree)
-0,78
—o— FCI
--—+- SDCI[TQ]f
--x-- SDCI[TQ]f+EPV
-0,794
———————————————— X'"_'_"""'_""‘—-—~—-—-—-—-—-—-—-—---~----.>
o084 o« £ 7 T
-0,81 T T T v I
0 10 20 30 40
R (Bohr)

FIG. 5. Evolution of the energy in the T-shaped piroblem in a [3,1p] ANO basis set, as a function of the lendg#of the axial bond.

order EPV’s are included, as in the SIPOQ]; . gpy method,  three methods converge towards the FCI dissociation limit. It
the resulting curve is almost identical to the FCI one, and thés to note the(SDCIT],[Q]s) results, which are fairly par-
errors, neaR,, are equal to 0,02 mH or smaller, 2 orders of allel to the FCI curve, although the errors at the dissociation
magnitude less than CC$D ones. At long distances, the limit are somehow larger that in the minimum region.

E (Hartree)
229,234
o o FCI
". x SDCI[TQIf
-29,235- + SDCI[TQ]f+EPV
1 o CCSD(T)
*a % <SDCI[T]p[QIf>
229,236
_________ Sfpermmemrre s TR -7
& £}
-29,237-
29,238 ‘ r
0 15 20
R (Bohr)

FIG. 6. Evolution of the energy in the Benolecule in a [3,2p,1d] ANO basis set, as a function of the bond lend#h,

Downloaded-29-Jan-2010-to~147.156.182.2%. FeMstRHYSonQli O3, Ne: AL B ANELSIoI 998y right; ~see-http://jcp.aip.orglicp/copyright.jsp



Nebot-Gil et al.: Self consistent intermediate Hamiltonians 2587

TABLE IV. Be, molecule in an ANO [3,2p,1d] basis set as a function of the internuclear distaftéin
bohr. FCI energies in hartrees and differences to FCI in millihartrees.

R E(FCI) SDCITQl SDCITQl; epy ccso) (SDCITI,[Ql)
4 —29,229824 -0,92 -0,12 1,51 0,23
4.4 —29,235853 -0,73 -0,08 1,36 0,30
4.8 —29,237368 -0,54 -0,04 1,15 0,39
5 —29,237467 —0,46 -0,02 1,03 0,43
5,2 —29,237414 -0,39 -0,01 0,92 0,46
5,6 —29,237227 -0,28 0,00 0,71 0,50
6 —29,237140 -0,21 0,00 0,53 0,52
7 —29,237231 -0,10 0,00 0,25 0,54
8 —29,237255 -0,05 0,00 0,12 0,55
9 —29,237158 -0,02 0,00 0,06 0,55
10 —29,237044 -0,01 0,00 0,03 0,55
12 —29,236905 0,00 0,00 0,01 0,54
14 —29,236853 0,00 0,00 0,00 0,54
16 —29,236834 0,00 0,00 0,00 0,54
20 —29,236824 0,00 0,00 0,00 0,54
V. CONCLUDING REMARKS EN zeroth order Hamiltonian and EPV higher order correc-
tions give very good estimations of the FCI correlation en-
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