152 research outputs found

    Resource Allocation for Epidemic Control in Metapopulations

    Get PDF
    Deployment of limited resources is an issue of major importance for decision-making in crisis events. This is especially true for large-scale outbreaks of infectious diseases. Little is known when it comes to identifying the most efficient way of deploying scarce resources for control when disease outbreaks occur in different but interconnected regions. The policy maker is frequently faced with the challenge of optimizing efficiency (e.g. minimizing the burden of infection) while accounting for social equity (e.g. equal opportunity for infected individuals to access treatment). For a large range of diseases described by a simple SIRS model, we consider strategies that should be used to minimize the discounted number of infected individuals during the course of an epidemic. We show that when faced with the dilemma of choosing between socially equitable and purely efficient strategies, the choice of the control strategy should be informed by key measurable epidemiological factors such as the basic reproductive number and the efficiency of the treatment measure. Our model provides new insights for policy makers in the optimal deployment of limited resources for control in the event of epidemic outbreaks at the landscape scale

    Spatial heterogeneity in projected leprosy trends in India

    Get PDF
    Background: Leprosy is caused by infection with Mycobacterium leprae and is characterized by peripheral nerve damage and skin lesions. The disease is classified into paucibacillary (PB) and multibacillary (MB) leprosy. The 2012 London Declaration formulated the following targets for leprosy control: (1) global interruption of transmission or elimination by 2020, and (2) reduction of grade-2 disabilities in newly detected cases to below 1 per million population at a global level by 2020. Leprosy is treatable, but diagnosis, access to treatment and treatment adherence (all necessary to curtail transmission) represent major challenges. Globally, new case detection rates for leprosy have remained fairly stable in the past decade, with India responsible for more than half of cases reported annually. Methods: We analyzed publicly available data from the Indian Ministry of Health and Family Welfare, and fit linear mixed-effects regression models to leprosy case detection trends reported at the district level. We assessed correlation of the new district-level case detection rate for leprosy with several state-level regressors: TB incidence, BCG coverage, fraction of cases exhibiting grade 2 disability at diagnosis, fraction of cases in children, and fraction multibacillary. Results: Our analyses suggest an endemic disease in very slow decline, with substantial spatial heterogeneity at both district and state levels. Enhanced active case finding was associated with a higher case detection rate. Conclusions: Trend analysis of reported new detection rates from India does not support a thesis of rapid progress in leprosy control

    Using community-level prevalence of Loa loa infection to predict the proportion of highly-infected individuals:statistical modelling to support Lymphatic Filariasis and Onchocerciasis elimination programs

    Get PDF
    Lymphatic Filariasis and Onchocerciasis (river blindness) constitute pressing public health issues in tropical regions. Global elimination programs, involving mass drug administration (MDA), have been launched by the World Health Organisation. Although the drugs used are generally well tolerated, individuals who are highly co-infected with Loa loa are at risk of experiencing serious adverse events. Highly infected individuals are more likely to be found in communities with high prevalence. An understanding of the relationship between individual infection and population-level prevalence can therefore inform decisions on whether MDA can be safely administered in an endemic community. Based on Loa loa infection intensity data from individuals in Cameroon, the Republic of the Congo and the Democratic Republic of the Congo we develop a statistical model for the distribution of infection levels in communities. We then use this model to make predictive inferences regarding the proportion of individuals whose parasite count exceeds policy-relevant levels. In particular we show how to exploit the positive correlation between community-level prevalence and intensity of infection in order to predict the proportion of highly infected individuals in a community given only prevalence data from the community in question. The resulting prediction intervals are not substantially wider, and in some cases narrower, than the corresponding binomial confidence intervals obtained from data that include measurements of individual infection levels. Therefore the model developed here facilitates the estimation of the proportion of individuals highly infected with Loa loa using only estimated community level prevalence. It can be used to assess the risk of rolling out MDA in a specific community, or to guide policy decisions

    Economically optimal timing for crop disease control under uncertainty: an options approach

    Get PDF
    Severe large-scale disease and pest infestations in agricultural regions can cause significant economic damage. Understanding if and when disease control measures should be taken in the presence of risk and uncertainty is a key issue. We develop a framework to examine the economically optimal timing of treatment. The decision to treat should only be undertaken when the benefits exceed the costs by a certain amount and not if they are merely equal to or greater than the costs as standard net-present-value (NPV) analysis suggests. This criterion leads to a reduction in fungicide use. We investigate the effect of the model for disease progress on the value required for immediate treatment by comparing two standard models for disease increase (exponential and logistic growth). Analyses show that the threshold value of benefits required for immediate release of treatment varies significantly with the relative duration of the agricultural season, the intrinsic rate of increase of the disease and the level of uncertainty in disease progression. In comparing the performance of the delay strategy introduced here with the conventional NPV approach, we show how the degree of uncertainty affects the benefits of delaying control

    Forecasting the new case detection rate of leprosy in four states of Brazil : a comparison of modelling approaches

    Get PDF
    Background Brazil has the second highest annual number of new leprosy cases. The aim of this study is to formally compare predictions of future new case detection rate (NCDR) trends and the annual probability of NCDR falling below 10/100,000 of four different modelling approaches in four states of Brazil: Rio Grande do Norte, Amazonas, Ceará, Tocantins. Methods A linear mixed model, a back-calculation approach, a deterministic compartmental model and an individual-based model were used. All models were fitted to leprosy data obtained from the Brazilian national database (SINAN). First, models were fitted to the data up to 2011, and predictions were made for NCDR for 2012–2014. Second, data up to 2014 were considered and forecasts of NCDR were generated for each year from 2015 to 2040. The resulting distributions of NCDR and the probability of NCDR being below 10/100,000 of the population for each year were then compared between approaches. Results Each model performed well in model fitting and the short-term forecasting of future NCDR. Long-term forecasting of NCDR and the probability of NCDR falling below 10/100,000 differed between models. All agree that the trend of NCDR will continue to decrease in all states until 2040. Reaching a NCDR of less than 10/100,000 by 2020 was only likely in Rio Grande do Norte. Prediction until 2040 showed that the target was also achieved in Amazonas, while in Ceará and Tocantins the NCDR most likely remain (far) above 10/100,000. Conclusions All models agree that, while incidence is likely to decline, achieving a NCDR below 10/100,000 by 2020 is unlikely in some states. Long-term prediction showed a downward trend with more variation between models, but highlights the need for further control measures to reduce the incidence of new infections if leprosy is to be eliminated

    Forecasting the new case detection rate of leprosy in four states of Brazil: A comparison of modelling approaches.

    Get PDF
    BACKGROUND: Brazil has the second highest annual number of new leprosy cases. The aim of this study is to formally compare predictions of future new case detection rate (NCDR) trends and the annual probability of NCDR falling below 10/100,000 of four different modelling approaches in four states of Brazil: Rio Grande do Norte, Amazonas, Ceará, Tocantins. METHODS: A linear mixed model, a back-calculation approach, a deterministic compartmental model and an individual-based model were used. All models were fitted to leprosy data obtained from the Brazilian national database (SINAN). First, models were fitted to the data up to 2011, and predictions were made for NCDR for 2012-2014. Second, data up to 2014 were considered and forecasts of NCDR were generated for each year from 2015 to 2040. The resulting distributions of NCDR and the probability of NCDR being below 10/100,000 of the population for each year were then compared between approaches. RESULTS: Each model performed well in model fitting and the short-term forecasting of future NCDR. Long-term forecasting of NCDR and the probability of NCDR falling below 10/100,000 differed between models. All agree that the trend of NCDR will continue to decrease in all states until 2040. Reaching a NCDR of less than 10/100,000 by 2020 was only likely in Rio Grande do Norte. Prediction until 2040 showed that the target was also achieved in Amazonas, while in Ceará and Tocantins the NCDR most likely remain (far) above 10/100,000. CONCLUSIONS: All models agree that, while incidence is likely to decline, achieving a NCDR below 10/100,000 by 2020 is unlikely in some states. Long-term prediction showed a downward trend with more variation between models, but highlights the need for further control measures to reduce the incidence of new infections if leprosy is to be eliminated

    Retrospective Analysis of the 2014-2015 Ebola Epidemic in Liberia.

    Get PDF
    The 2014-2015 Ebola epidemic has been the most protracted and devastating in the history of the disease. To prevent future outbreaks on this scale, it is imperative to understand the reasons that led to eventual disease control. Here, we evaluated the shifts of Ebola dynamics at national and local scales during the epidemic in Liberia. We used a transmission model calibrated to epidemiological data between June 9 and December 31, 2014, to estimate the extent of community and hospital transmission. We found that despite varied local epidemic patterns, community transmission was reduced by 40-80% in all the counties analyzed. Our model suggests that the tapering of the epidemic was achieved through reductions in community transmission, rather than accumulation of immune individuals through asymptomatic infection and unreported cases. Although the times at which this transmission reduction occurred in the majority of the Liberian counties started before any large expansion in hospital capacity and the distribution of home protection kits, it remains difficult to associate the presence of interventions with reductions in Ebola incidence
    corecore