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Yaoundé 1, Yaoundé, Cameroon, 4 World Health Organisation, Geneva, Switzerland, 5 Parasites and

Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, Cameroon,

6 Research Foundation in Tropical Medicine and Environment, Buea, Cameroon

* d.schlueter@lancaster.ac.uk

Abstract

Lymphatic Filariasis and Onchocerciasis (river blindness) constitute pressing public health

issues in tropical regions. Global elimination programs, involving mass drug administration

(MDA), have been launched by the World Health Organisation. Although the drugs used are

generally well tolerated, individuals who are highly co-infected with Loa loa are at risk of

experiencing serious adverse events. Highly infected individuals are more likely to be found

in communities with high prevalence. An understanding of the relationship between individ-

ual infection and population-level prevalence can therefore inform decisions on whether

MDA can be safely administered in an endemic community. Based on Loa loa infection

intensity data from individuals in Cameroon, the Republic of the Congo and the Democratic

Republic of the Congo we develop a statistical model for the distribution of infection levels in

communities. We then use this model to make predictive inferences regarding the propor-

tion of individuals whose parasite count exceeds policy-relevant levels. In particular we

show how to exploit the positive correlation between community-level prevalence and inten-

sity of infection in order to predict the proportion of highly infected individuals in a community

given only prevalence data from the community in question. The resulting prediction inter-

vals are not substantially wider, and in some cases narrower, than the corresponding bino-

mial confidence intervals obtained from data that include measurements of individual

infection levels. Therefore the model developed here facilitates the estimation of the propor-

tion of individuals highly infected with Loa loa using only estimated community level preva-

lence. It can be used to assess the risk of rolling out MDA in a specific community, or to

guide policy decisions.
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Author Summary

Lymphatic Filariasis (LF) is caused by parasitic worms which live in the lymphatic system.

Though several body parts may be affected, LF characteristically leads to the enlargement

of limbs, causing pain, physical disability and social stigma. Onchocerciasis (river blind-

ness) is caused by similar worms which inhabit the subcutaneous tissue and lead to dis-

turbing skin lesions, visual impairment and blindness. Onchocerciasis and LF affect over

146 million people, and have been targeted for elimination as public health problems by

the World Health Organisation, using mass drug administration (MDA). Although the

drugs used in MDA are generally well tolerated, individuals who are highly co-infected

with Loa loa are at risk of experiencing serious adverse events. In order to inform deci-

sions on whether MDA can be safely administered in a community, we investigate the

relationship between community level prevalence of Loa loa and individual infection lev-

els through the development of a statistical model. We find a strong positive correlation

and show how this can be exploited to estimate the proportion of individuals highly

infected with Loa loa without the need for data on individual infection levels. The model

therefore provides a method to assess the risk of rolling out MDA in a specific commu-

nity, or to guide policy decisions.

Introduction

Lymphatic Filariasis (LF) and Onchocerciasis are parasitic helminth diseases that constitute a

serious public health issue in tropical regions [1]. LF causes one of the highest global burdens

of all vector-borne diseases, with an estimated 120 million people infected in 83 countries [1].

As LF, onchocerciasis is a major human disease which affects an estimated 26 million people

in 34 countries [1, 2]. Both diseases have been targeted for elimination by the World Health

Organisation (WHO), using mass drug administration (MDA) [1, 3]. The LF elimination pro-

gram is based on annual mass administration of a single dose of diethylcarbamazine or iver-

mectin combined with albendazole [1, 4], while the onchocerciasis elimination program is

based on mass administration of ivermectin only [1]. Although both medications are generally

considered to be safe, individuals who are heavily co-infected with Loa loa parasites are at risk

of developing severe, even fatal, adverse reactions to either drug [5–8]. Heavily co-infected

individuals are more likely to be found in communities with high prevalence [5]. This observa-

tion has led to a requirement that precautionary measures be implemented before roll-out of

LF and onchocerciasis MDA to communities in Loa loa high-prevalence areas [9, 10].

In this study we investigate the distribution of Loa loa microfilarial loads in communities.

To address this problem we first develop a model for the variation in parasite count between

individuals within a community, and explore how the parameters of this distribution co-vary

with each other and with community-level covariates.This study builds on previous work

which also looked at the distribution of Loa loa microfilarial loads in communities [11]. In

contrast to this earlier work, we allow the relationship between community-level prevalence

and mean intensity of infection to vary stochastically between communities. By exploiting the

correlation between these two community-level features we are able to predict the proportion

of a community whose parasite count exceeds a policy-determined threshold when only preva-

lence data are available for the community in question. We can also quantify the uncertainty

associated with this prediction. This can help inform decisions on whether LF or onchocercia-

sis MDA can be safely administered in a community, given only an estimate of Loa loa
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prevalence. Thus it can be used to guide policy decisions regarding the targeting of communi-

ties for LF and onchocerciasis MDA, especially for hypo-endemic communities where treat-

ment strategies still need to be defined [12].

Materials and Methods

Data Sources

Epidemiological data. The epidemiological data available were obtained from two field

studies in village communities (henceforth villages) conducted in the West and East provinces

of Cameroon between July and August 2001 [13] as well as in the Republic of the Congo and

the Bas-Congo and Orientale provinces of the Democratic Republic of the Congo (DRC)

between January and May 2004 [14]. Fig 1 shows the locations of all sampled villages. The

Cameroon data contain the estimated Loa loa infection level (parasites/ml of blood) in samples

from between 24 and 229 individuals in a total of 73 villages [13]. The data from the Republic

of the Congo and the DRC contain the same information from between 27 and 102 individuals

in a total of 149 villages, together with the bio-ecological zones of each village (forest, mosaic

forest savannah, savannah) [14]. Collectively, the two data-sets cover 19 049 individuals from

222 villages. The distributions, across all 222 villages, of Loa loa prevalence, the proportion of

individuals with infection levels greater than 8,000 microfilariae per ml blood and the propor-

tion with infection levels greater than 30,000 microfilariae per ml blood are given in Fig 2.

Environmental data. We obtained the following environmental data to be considered as

candidate covariates:

Fig 1. Map showing the locations of the 222 villages for which data are available.

doi:10.1371/journal.pntd.0005157.g001
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• Average annual rainfall and temperature at 1km resolution from the WorldClim database

(http://www.worldclim.org) for the years 1950–2000 and 1950–2001, respectively;

• Elevation at 90m resolution from the Shuttle Radar Topography Mission;

• Maximum normalised-difference vegetation index (NDVI) for 2004 and standard deviation

of NDVI for 2005 at 250m resolution acquired from the Moderate-Resolution Imaging Spec-

tro-radiometer at the village coordinates and as an average over a 5km radius around the vil-

lage coordinates;

• Percentage of forest cover at 300m resolution acquired from GlobCover for the years 2004–

2006, averaged over a 5km radius around the village coordinates.

Statistical Model

Let Y denote the parasite count/ml blood for a randomly selected person in a village, and F(y)

the probability that Y� y. Then, the village-level prevalence is ρ = 1 − F(0). Our model for F(y)

incorporates a discrete probability mass 1 − ρ at y = 0, and continuously varying values condi-

tional on y> 0. Hence,

Fðy; r; l; kÞ ¼

(
1 � r y ¼ 0

ð1 � rÞ þ rGðy; l;kÞ y > 0
; ð1Þ

where y is the parasite load/ml blood, ρ the village-level prevalence and G(y; λ, κ) a continuous

parametric distribution with parameters λ and κ.

The empirical distributions of parasite load in individual villages (Results, Fig 3) suggest as

suitable candidates for G(y; λ, κ) either the Gamma or Weibull family, with the Weibull gener-

ally giving the better fit (Results, Fig 4) and, in either case, κ<1. This is consistent with the gen-

eral observation that parasite load distributions in parasitic infected communities are over-

dispersed with a small proportion of individuals harbouring a large proportion of the parasite

load within the population [15].

In fitting the model to the data from all 222 villages, we reduced the total number of param-

eters by assuming a constant value of κ (S1 Supplementary Material, section S.1). The resulting

Fig 2. Distributions of Loa loa prevalence (left panel), the proportion of individuals with infection levels greater

than 8,000 microfilariae per ml blood (centre panel) and the proportion with infection levels greater than 30,000

microfilariae per ml blood (right panel), in the data from all 222 villages.

doi:10.1371/journal.pntd.0005157.g002
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model for village i is

F y; ri; li; kð Þ ¼

(
1 � ri y ¼ 0

ð1 � riÞ þ ri 1 � exp �
y
li

� �k� �� �

y > 0
: ð2Þ

In (2) we then modelled the variation amongst the ρi and the λi by logistic and log-linear

mixed effects regressions, respectively. Hence,

log
ri

1 � ri

� �

¼ d0iaþ Ui : i ¼ 1; . . . n; ð3Þ

and

logðliÞ ¼ d0 ibþ Vi; : i ¼ 1; . . . n; ð4Þ

Fig 3. Empirical cumulative distributions of the parasite levels in individuals from five randomly

selected villages.

doi:10.1371/journal.pntd.0005157.g003

Fig 4. Log-likelihood-ratio statistic D = 2(Lw − Lg), for 156 villages where Lw and Lg denote maximised

log-likelihoods for Weibull and Gamma fits, respectively.

doi:10.1371/journal.pntd.0005157.g004
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where the d0i are vectors of covariates and the (Ui,Vi) are random effects, bivariate Normally

distributed with means zero, variances σU
2 and σV

2, and correlation ϕ. The values of Ui and Vi

are realised independently in different villages.

Inference

We estimate the model parameters by the method of maximum likelihood. For data from sam-

ples of size ni in each of m villages i, let yij denote the parasite count/ml for individual j in vil-

lage i and zi the number of yij > 0. Hence,

LðUi;ViÞ ¼ ðni � ziÞ logð1 � riÞ þ zi log ri þ
Xni

j¼1

loggðyij; li; kÞ; ð5Þ

where ρi and λi are defined by (3)and (4), respectively. The log-likelihood for the observed data

is then

Lða; b;k; sU
2; sV

2; �Þ ¼
Xm

i¼1

log
�Z Z

expfLiðu; vÞg hðu; v; sU
2; sV

2; �Þdu dv
�

; ð6Þ

where h(�) denotes the bivariate Normal density of (Ui,Vi). We evaluate the integrals on the

right-hand side of(6) numerically, using a quasi-Monte Carlo method. Details are given in S1

Supplementary Material, section S.2.

Model Development

We first fitted separate models of the form (1) to data from each village, specifying either a

Gamma or Weibull distribution for G(�) and compared the maximised values of the log likeli-

hood, which suggested that the Weibull gave the better fit (Results, Fig 4). We therefore fitted

the single model, as defined by Eqs(2), (3), and(4), to the complete data-set, estimating the

parameter vector (α, β, κ, σU
2, σV

2, ϕ) by maximising the log-likelihood defined at Eq(6). To

identify potentially important covariate effects, we used a combination of informal graphical

methods, subject-matter knowledge from the literature and significance testing based on the

asymptotic chi-squared distribution of the maximised log-likelihood-ratio D, defined as twice

the difference between maximised log-likelihoods for models with and without the covariate

in question.

Prediction

Our goal is to predict, for each village, the proportion of inhabitants whose level of infection

exceeds a policy-specified threshold, c, given only the number, Z, of infected individuals in a

random sample of size n. Hence, our target for prediction is T = ρ{1 − G(c)}. A relevant value

for c is one that is considered to pose a material risk of experiencing an adverse reaction to pro-

phylactic administration of anti-filarial medication. Current debate is around whether 8000 or

30 000 microfilariae/ml is the more appropriate. We cannot calculate T directly, because we do

not observe the random effects U and V, for the village in question. For prediction of T, we

therefore calculate the plug-in predictive distribution of T i.e. the distribution of T given n, Z,

model parameter estimates and, if relevant, covariate values. This distribution is analytically

intractable. However, given values for the model parameters and for the covariates from a par-

ticular village, ρ and G(c) are explicit functions of U and V, respectively, i.e. T = T(U,V). We

therefore simulate samples from the conditional distribution of (U,V) given the data. We then

transform each such sample according to the formula for T(U,V) to obtain samples from the

required predictive distribution. By repeating this process a sufficiently large number of times,
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we obtain arbitrarily close approximations to the required predictive distributions. The algo-

rithm that we used for this is described in S1 Supplementary Material, section S.3.

In order to investigate whether the uncertainty in estimating the model parameters materi-

ally affects the predictive distribution of T, we carry out a sensitivity analysis by using samples

drawn from the sampling distribution of these parameters rather than their point estimates.

For this sensitivity analysis we assume that the parameters follow a multivariate Normal distri-

bution whose mean is given by the set of point estimates and whose variance-covariance

matrix is the inverse of the observed Fisher information matrix. For each such sample of

parameter values, we then simulate a draw from the corresponding predictive distribution of

(U, V), and hence from the predictive distribution of T.

Predictions to guide policy can also be made. A potential policy-relevant question is: what

can we say about the proportion of highly infected people in hypothetical communities with

true prevalence, p? For a given threshold c and estimated values of the model parameters, the

proportion of highly infected people, T, is a function of two random variables, U and V, i.e.

T = T(U,V). Knowing p is equivalent to knowing the value of U, say U = u. Hence, the relevant

predictive distribution to answer the stated question is the conditional probability distribution

of T(U,V) given U = u. To simulate samples from T(U,V) given U = u, we simulate samples

from the distribution of V given U = u and then transform each sample according to the for-

mula for T(U,V). This is distinct from the prediction of the proportion of highly infected indi-

viduals in a specific community based on the observed prevalence in a sample, for which

samples from the conditional distribution (U,V | Z, n) have to be simulated before calculating

T(U,V) given Z and n to take into account the uncertainty around the observed prevalence.

Results

For 67 of the villages, the data contain fewer than 4 individuals found to be infected. We

excluded these from the first-stage analysis reported in the section immediately below, but

included them thereafter.

Single-Village Analysis

We first considered which of the Gamma and Weibull distributions gave the better fit to the

data by comparing the maximised values of their log-likelihoods. Fig 4 shows the distribution

of D = 2(Lw − Lg) over the 156 villages with 4 or more positive infection levels, where Lg and Lw

are the maximised values of the log-likelihoods assuming Gamma and Weibull distributions,

respectively. The preponderance of positive values suggests that the Weibull gives the better fit.

Fig 5 compares the empirical and fitted cumulative distribution functions for the same five

randomly selected villages as in Fig 3. The convex shape indicates that in each case κi < 1.

Empirical distributions of the maximum likelihood estimates for parameters of the Weibull

model, estimated separately for each of the 156 villages, are given in Figure Ain the S1 Supple-

mentary Material.

Linking the Villages

To link the villages and reduce the number of model parameters accordingly, we modelled the

ρi and λi using the mixed-effects regression framework set out in Eqs (2), (3) and (4). We first

fitted each of the candidate covariates separately, then developed multiple regression models

for ρi and λi by forward selection. Following [16], we fitted MaxNDVI and elevation as split-

line regressions. In the case of MaxNDVI, the rationale is that NDVI, considered as a proxy for

green-ness of vegetation, is saturated beyond a value of 0.8. For elevation, the rationale is that

the disease vector cannot breed successfully above 1000 metres elevation. Following [17], we

Loa loa Infection Modelling to Support Lymphatic Filariasis and Onchocerciasis Elimination Programs
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used maximum NDVI and standard deviation of NDVI averaged over a 5km radius around

the village as candidate covariates rather than the measurements at the village coordinates

themselves, in order to account for the flight range of the vector.

Percentage forest cover gave the smallest p-value for the likelihood ratio test against a

model with no covariates (Table 1). Adding elevation gave a likelihood ratio statistic D = 19.91

on 4 degrees of freedom, corresponding to a p-value of 0.0005. Adding temperature to the

model that included both forest cover and elevation gave a likelihood-ratio statistic D = 9.7 on

2 degrees of freedom, corresponding to a p-value of 0.0079. Adding further covariates gave

minimal, non-significant improvements in the likelihood. Therefore, the covariates in our pro-

visional model are percentage forest cover, elevation and temperature. Although these covari-

ates show statistically significant associations with prevalence and intensity of infection, they

explain only small proportions of the parameter variation between villages (Fig 6).

Table Ain S1 Supplementary Material, section S.2 gives parameter estimates, standard

errors and 95% confidence intervals for the provisional model, and for a simpler model with-

out covariates. In either case, there is a substantial positive correlation between the village-level

random effects Ui and Vi. This is fundamental to the ability of village-level empirical preva-

lence to predict the proportion of highly-infected people in a specific village.

Prediction

Using the simpler model without covariates, we calculated the cumulative predictive distribu-

tions of T = ρ{1 − G(8000)} for the same five villages featured in Figs 3 and 5 (Fig 7). Models

Fig 5. Empirical (coloured lines and dots) and fitted (black lines) cumulative distributions of parasite levels for the

five randomly selected villages shown in Fig 3.

doi:10.1371/journal.pntd.0005157.g005

Table 1. Log-likelihood-ratio statistics, D, degrees of freedom, df, and p-values, p, for candidate

covariates in univariable analysis.

Variable D df p

Max(NDVI) 11.93 2 0.0026

Sd(NDVI) 12.16 2 0.0023

Elevation 35.72 4 3.3*10−7

Rainfall 4.41 2 0.35

% Forest Cover 68.25 2 1.55*10−15

Temperature 13.89 2 0.00096

doi:10.1371/journal.pntd.0005157.t001
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with and without covariates gave very similar predictive distributions, consistent with the ear-

lier observation that the covariates, although statistically significant, explain minimal empirical

variation (S1 Supplementary Material, section S.4). Thus, in practice, there is little or no

advantage in using the currently available covariates to predict T.

We use the median of the predictive distribution as a point prediction for T, and the inter-

val between the 2.5% and 97.5% quantiles of the predictive distribution as a 95% predictive

interval (Fig 7). For comparison, Fig 7 also shows 95% confidence intervals for T derived from

the observed proportions of sampled individuals whose level of infection exceeded c = 8000

parasites per ml of blood. Determining individual levels of infection is precisely what we wish

to avoid, because of the associated practical difficulties of doing so routinely in the field. It is

therefore encouraging that model-based predictive intervals using only the empirical preva-

lence overlap with the corresponding binomial confidence intervals using measured infection

levels, but are not substantially wider, and in some cases are actually narrower. Table Bin S1

Supplementary Material, section S.3 gives point predictions of T and associated 95% predictive

intervals for each of the 222 villages in our data.

The predictive accuracy illustrated in Fig 7 relies on the fit of the probability model. To ver-

ify the insensitivity of our results to uncertainty in estimation of the model parameters, we

repeated the predictions for all 222 villages using samples from the multivariate normal distri-

bution of the parameter estimates rather than their point estimates (see Methods section Pre-

diction). We drew 10,000 samples, which is the same number that we generated from the plug

in predictive distribution when using point estimates of the parameters. Fig 8 shows the point

predictions and the lengths of the prediction intervals, comparing the results when using point

Fig 6. Village-specific estimates of log(ρ/(1-ρ)) (upper row) and of logλ (lower row) plotted against percent forest

cover within a 5km radius (left column), elevation (centre column) and average temperature (right column). Red

lines show the fitted contributions to the multivariate regression model defined by Eqs (2), (3) and (4).

doi:10.1371/journal.pntd.0005157.g006
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estimates and when accounting for the uncertainty in the parameter values. The differences in

the point predictions obtained by the two approaches are negligible, and the lengths of the pre-

diction intervals only increase marginally when the corresponding plug-in intervals are already

wide, i.e. in villages with very small samples. These results are also given in Table B in the S1

Supplementary Material, section S.3.

Again using the covariate free version of the model, we also calculated the conditional dis-

tribution of T(U,V) given U = u to answer the question: what can we say about the proportion

of highly infected people in a hypothetical village as a function of its true prevalence. The left-

hand panel of Fig 9 shows selected quantiles of this distribution over a range of values of preva-

lence, based on the fitted model without covariates. The median curve shows, for example, that

a 20% prevalence corresponds to an estimated proportion 0.055 of individuals with parasite

counts greater than 8,000 per ml of blood, and that the associated 95% prediction interval runs

from 0.023 to 0.091. The right-hand panel of Fig 9 shows that using the higher threshold value

c = 30 000, a 20% prevalence corresponds to an estimated proportion 0.0134 of highly infected

individuals, with associated 95% prediction interval running from 0.002 to 0.039.

Discussion

Modelling the relationship between village-level prevalence and the distribution of infection

intensity enables prediction of the proportion of heavily infected individuals in a sampled

Fig 7. Cumulative predictive distributions of T, the proportion of village residents with parasite count greater than

c = 8000/ml, for the five randomly selected villages shown in Figs 3 and 5, based on the fitted model without

covariates. Dashed vertical lines show the point predictions. Black horizontal lines show equal-tailed 95% plug-in

predictive intervals. Red horizontal lines show the corresponding 95% confidence intervals for the true proportions based on

the binomial sampling distribution of the observed numbers of individuals in each village with parasite count greater than

c = 8000/ml.

doi:10.1371/journal.pntd.0005157.g007
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community, using only the observed prevalence in a sample of individuals. Furthermore, these

intervals are almost as precise as would be predictions based on directly ascertaining the pro-

portion of highly infected individuals.

This work builds on previous investigations into the distribution of Loa loa infection inten-

sities in communities [11]. In this earlier work a zero-truncated negative binomial distribution

is fitted to data on microfilarial loads in individual communities. Although technically differ-

ent, the earlier model is similar in spirit to ours, except that it models the relationship between

prevalence and mean intensity of infection deterministically. Consequently, it cannot be used

calculate the uncertainty associated with village-level predictions, but only to predict the “on

average” relationship between the proportion of highly infected individuals in a village and the

true prevalence in the village.

Fig 8. Comparison of predictions using the reported point estimates of model parameters and taking into account

the uncertainty around the estimated parameter values. The upper row shows point predictions (left column) and

prediction interval lengths (right column) for a high infection threshold c = 8,000. The lower row shows the corresponding

comparsions for a threshold c = 30,000.

doi:10.1371/journal.pntd.0005157.g008
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As we have shown in Fig 9, our model can also be used for this purpose, and the relation-

ships that we find (Fig 9) are very similar to those shown, albeit without any indications of

their uncertainty, in Fig 4 of [11].

If the village-specific random effects Ui and/or Vi exhibited smooth spatial variation, data

from multiple villages could be combined to improve the precision of predictions for a given

village. This would involve formulating and fitting a model for a bivariate spatial process {U
(x),V(x)}, where x denotes location, and the correlation between the elements of U(x) and/or V
(x) at a pair of locations x and x’ depends on the distance between x and x’. As a first, simpler

step in investigating spatial effects, we fitted a version of the model treating study-site as a

5-level factor: 1) DRC Bas Congo, 2) DRC North-West, 3) the Republic of the Congo, 4) Cam-

eroon West and 5) Cameroon East. The likelihood ratio statistic to compare this model to the

model without covariates was D = 63.79 on 8 degrees of freedom (p< 0.001). However, as pre-

viously seen with the environmental covariates, although statistically significant the differences

amongst the five study-sites explained little of the variation between villages (S1 Supplemen-

tary Material, section S.5). Parameter estimates, standard errors and 95% confidence intervals

are included in Table Ain S1 Supplementary Material, section S.2.

The predictive methods developed here are intended to be practicable in field-work condi-

tions. Our predictive algorithm runs on a lap-top computer using open-source software. In the

simple version of the model without covariates, the field-worker would need only to record the

number of positive and negative results from sampled individuals, choose a critical infection

level c and either enter this information into their lap-top, or transmit it as a text-message for

remote analysis. The algorithm would then output the predicted proportion of highly infected

individuals as a point estimate, and the predictive distribution in graphical form. In the

absence of covariates, it would also be feasible to develop a mobile phone implementation,

using a table look-up in conjunction with pre-computed percentiles of the predictive distribu-

tion of T for each relevant combination of c, n and z.

If, in due course, either a spatial model or one with covariates were to be used, the computer

running the predictive algorithm could be loaded with an accumulating set of geo-referenced

prevalence data from previously sampled villages and any relevant covariate images covering

the geographical region of interest.

Fig 9. Selected quantiles of the conditional probability distribution of the proportion of individuals with intensity

of infection greater than c = 8,000 parasites per ml of blood (left-hand panel) or c = 30,000 parasites per ml of

blood (right-hand panel), as functions of village-level prevalence. The median (solid line) provides a “best guess” of

the relationship between prevalence and proportion of highly infected individuals; the 2.5% and 97.5% quantiles indicate

the imprecision of this best guess.

doi:10.1371/journal.pntd.0005157.g009
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A practical limitation to applying the model-based predictions in the field is the number of

people of whom blood samples need to be taken in order to get predictions with satisfactory

precision. The decisions regarding how large a proportion of highly infected individuals in a

village is acceptable and the certainty with which this proportion is not exceeded, have to be

made by the MDA program coordinators. This means that there can be no hard rules for the

number of individuals that need to be tested in any one village. However, a feasible strategy is

to first sample a manageable number of people, say 100, to be tested and calculate the relevant

predictive distributions. Should the uncertainty around the resulting prediction be too large,

additional individuals could be sampled and the prediction updated until a satisfactory preci-

sion in the predictions is reached. New developments in mobile microscopy, which facilitate

the fast, automatic quantification of Loa loa microfilariae in whole blood using mobile phones,

may lead to quicker and cheaper ways of testing more individuals and therefore obtaining

higher precision in the predictions. Before routine use, it would be wise to recalibrate the

model using data collected with mobile rather than classical microscopy. The first study using

the mobile microscopy unit CellScope has shown strong correlation between CellScope counts

and the counts generated by classical microscopy (94% specificity, 100% sensitivity) in 33 indi-

viduals in Cameroon [18]. Notwithstanding the small size of this first study, it would therefore

seem unlikely that the specific form of microscopy would necessitate any fundamental change

in the structure of the model. Note also that the predictions reported in the present paper are

based solely on sample prevalence data, hence their validity for data collected by different tech-

nologies requires only that these technologies produce prevalence estimates that are in line

with estimates obtained using classical microscopy. Nevertheless, our motivation for deriving

a method of prediction that uses only prevalence information was that classical microscopy is

relatively impractical for routine use in the field. Should newer technologies remove that prac-

tical constraint, the same model, with suitable re-calibration of the model parameters, can be

used to make predictive inference that use all of the available data, with consequent gains in

precision for fixed sample size.

Rigorous validation of our predictive inferences is not possible, as it would require data to

be collected from villages with known true prevalence, which in turn would require every indi-

vidual in each village to be tested. Informally, the qualitative agreement between our model-

based 95% predictive intervals and binomial 95% confidence intervals based on the observed

number and proportion of sampled individuals who are highly infected (Fig 7) is encouraging,

because the binomial estimates, although potentially inefficient, are guaranteed to be unbiased.

As a further partial validation, we have applied our model, without any re-estimation of its

parameters, to further samples from 253 village communities in Cameroon, Gabon and Equa-

torial Guinea which were not used for the model development. To get a sense of the accuracy

of these out-of-sample predictions, we predict the proportion of highly infected individuals

and associated 95% predictive intervals for each of these villages and compare them with the

observed proportion of highly infected individuals in the samples and the associated 95% con-

fidence intervals based on the binomial sampling distribution. See S1 Supplementary Material,

section S.6 (Figures E, F). The high degree of overlap between the model-based and binomial

intervals illustrated in Fig 7 is generally maintained. The largest differences occur when high

infection levels are observed in a small sample and the binomial confidence intervals are there-

fore relatively wide. In these cases, the model generally predicts the true proportion of highly

infected individuals to be towards the lower end of the binomial confidence interval, and the

model-based prediction interval is narrower than the binomial confidence interval. This illus-

trates a general phenomenon, that when data are sparse, parametric modelling assumptions

can impart substantial gains in statistical efficiency by comparison with non-parametric

methods.
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In summary, using empirical data to evaluate the relationship between prevalence and

intensity of infection, we developed a modelling tool that can be used for operational decision-

making in the field to predict the proportion of a village community that is heavily infected

with Loa loa using only empirical prevalence data for the community in question. The model

can also be used to inform policy decisions regarding the safety of an MDA approach to treat-

ing lymphatic filariasis or onchocerciasis within specific sets of communities.
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