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Abstract

Previous game-theoretic studies of vaccination behavior typically have often assumed that populations are homogeneously
mixed and that individuals are fully rational. In reality, there is heterogeneity in the number of contacts per individual, and
individuals tend to imitate others who appear to have adopted successful strategies. Here, we use network-based
mathematical models to study the effects of both imitation behavior and contact heterogeneity on vaccination coverage
and disease dynamics. We integrate contact network epidemiological models with a framework for decision-making, within
which individuals make their decisions either based purely on payoff maximization or by imitating the vaccination behavior
of a social contact. Simulations suggest that when the cost of vaccination is high imitation behavior may decrease
vaccination coverage. However, when the cost of vaccination is small relative to that of infection, imitation behavior
increases vaccination coverage, but, surprisingly, also increases the magnitude of epidemics through the clustering of non-
vaccinators within the network. Thus, imitation behavior may impede the eradication of infectious diseases. Calculations
that ignore behavioral clustering caused by imitation may significantly underestimate the levels of vaccination coverage
required to attain herd immunity.
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Introduction

Vaccination is the primary public health measure for preventing

transmission of infectious diseases as well as reducing morbidity and

mortality from infections [1]. An individual’s decision-making with

respect to vaccination may depend on perceived risk of infection,

cost of infection, cost of vaccination, and the vaccinating behaviors

of other individuals [2,3,4]. Game theory has been integrated into

epidemiological models to investigate vaccination behaviors

[5,6,7,8]. Previous game-theoretic studies on vaccination dynamics

typically assume that the population is homogeneously mixed and

fully rational, defined as making decisions that yield the highest

personal utility based on their perceived risks. In reality, there is

individual heterogeneity in the number of contacts [9–22] and

individuals frequently imitate behaviors of their contacts [23,24],

particularly those who appear to have adopted successful strategies

[25,26]. In addition, peer influence is a significant determinant of

vaccine uptake in many populations [27].

An imitation vaccination model was previously developed under

the assumption of a homogeneously mixed population [25,28].

This model predicts that imitation is likely to generate oscillations

in vaccine uptake, and that the oscillations tend to be large when

the perceived risk of vaccination is high [25]. Since this model

assumes that the population is homogeneously mixed, it cannot

capture clustering of vaccination behaviors in a social network.

The clustering of vaccination opinions can exacerbate disease

outbreaks by interfering with herd immunity [29,30,31].

To evaluate the effect of imitation dynamics on vaccination and

disease outbreaks, we develop social network models with imitation

behavior. We consider three different contact network structures, a

contact network based on a prior study of contact patterns within

Vancouver [9], a relative homogeneous network with a Poisson

degree distribution, and a heterogeneous scale free network (with a

power law degree distribution). We assume that a portion of the

population adopts vaccination based on a ‘‘payoff maximization’’

strategy that maximizes their perceived payoff, and the remaining

population imitates the vaccination choices of their neighbors.

For all three networks considered, we find that imitation

behavior increases the equilibrium level of vaccination coverage

when vaccines are inexpensive and decreases vaccination coverage

when vaccines are expensive. However, when imitation increases

vaccination coverage, it simultaneously leads to connected clusters

of unvaccinated individuals, which increase disease prevalence.

The emergence of susceptible clusters and its detrimental

epidemiological effects are most prominent when vaccination

coverage is close to the herd immunity threshold.
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Methods

Basic description
We consider a social contact network where individuals can

switch between decisions of vaccinating or not vaccinating. An

individual’s vaccination decision is a function of both the strategies

their neighbors have adopted and the perceived benefits of

vaccination. Individuals know only the vaccination opinions of

immediate neighbors (i.e., whether they are in favor of or opposed

to vaccinating), and update their strategies either by imitating one

of their neighbors (i.e., following their opinion) or by maximizing

their perceived benefits. The fraction of individuals with imitation

behavior is indicated by H, and the remaining individuals (1{H)

follow a payoff maximization strategy. The population opinion

configuration is denoted by V~V X1,X2, � � � ,XNð Þ, where Xi

indicates the vaccination opinion of individual i,

Xi~
1 if i is vaccinator

0 if i is nonvaccinator

�
ð1Þ

Let P Xið Þ be the perceived payoff of an individual i with opinion

Xi, then

P(Xi~1)~{CV ð2Þ

P(Xi~0)~{CI
:li, ð3Þ

where CV is the individual’s cost of vaccinating, CI is the

individual’s cost of infection, and li is perceived probability of

infection. The payoffs are negative because maximizing a payoff in

this context means minimizing a negative health cost/impact. Let

r be the relative cost of vaccination (cost of vaccination/cost of

infection), r~CV=CI
. Without loss of generality, we can rewrite

Eqs. 2 and 3 as:

P(Xi~1)~{r ð4Þ

P Xi~0ð Þ~{li, ð5Þ

Let b be the perceived probability of contracting the disease from

an infectious neighbor at a given time step and Ni
nv be the number

of non-vaccinators in the neighborhood of i, respectively. We

assumed that the perceived probability of infection depends on the

number of non-vaccinator neighbors (whose status as non-

vaccinators is assumed known), with no correlation between

degree and the number of non-vaccinator neighbors. From basic

Author Summary

Both infectious diseases and behavioral traits can spread
via social contacts. Using network-based mathematical
models, our study addresses the interplay between these
two processes, as disease spreads through a population
and individuals copy their social contacts when making
vaccination decisions. Imitation can produce clusters of
non-vaccinating, susceptible individuals that facilitate
relatively large outbreaks of infectious diseases despite
high overall vaccination coverage. This may explain, for
example, recent measles outbreaks observed in many
countries with universal measles vaccination policies.
Given that vaccine decisions are likely to be influenced
by social contacts and that such imitation can have
detrimental epidemiological effects, it is important that
policy makers understand its causes, magnitude and
implications for disease eradication.

Figure 1. Degree distributions. The proportion of the population with each given degree are different for a Poisson network (red histogram),
urban network (blue histogram), and exponentially-scaled power law network (pink histogram).
doi:10.1371/journal.pcbi.1002469.g001
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probability theory we can express li as

li~1{(1{(1{z)b)Ni
nv , ð6Þ

where f denotes the perceived probability that an unvaccinated

neighbor will not become infected.

‘‘Payoff maximization’’ behavior
A payoff maximizer i will vaccinate if P Xi~1ð ÞwP Xi~0ð Þ and

will not vaccinate if P Xi~1ð ÞvP Xi~0ð Þ. When P Xi~1ð Þ~
P Xi~0ð Þ, an individual i will adopt the vaccinator or non-

vaccinator strategy with equal probability (50%). If the entire

population adopts payoff maximization strategy, the system is

expected to settle on the Nash equilibrium at steady state.

Imitation vaccination behavior
An imitator i randomly chooses a neighbor (‘role model’) j to

imitate. Imitator i adopts j’s vaccination decision according to

predetermined rules:

(1) If i and j have the same opinion, they will both hold that

opinion.

(2) If i and j have opposite opinions, i will adopt j’s vaccination

decision with probability

W(DPi?j)~
1

1ze{a:DPi?j
, ð7Þ

where DPi?j is the benefit that i gains by adopting j’s

vaccination decision. If i is a vaccinator and j is a non-

vaccinator, DPi?j~{lizr; if i is a non-vaccinator and j is a

vaccinator, DPi?j~li{r. If we assume r[ 0,1½ �, DPi?j[
{1,1½ �. The parameter a in Eq. 7 determines the individuals’

responsiveness to payoff differences. For low values of a, Eq. 7

changes more gradually as DPi?j goes from negative to

positive, meaning that imitators are less responsive to payoff

Figure 2. Fermi function. Probability that individual i adopts individual j’s vaccination strategy. a represents the degree to which individuals
respond to the differences of payoff.
doi:10.1371/journal.pcbi.1002469.g002

Table 1. Summary of the parameters used in simulations.

Parameter Description Baseline value

b̂b Transmission probability Calibrated*

f Probability a random contact is not
infected per epidemic

Calibrated**

b Perceived transmission probability b̂b=(1{f)

a Degree of responsiveness to
differences of payoff

5

g Recovery probability 0.25

N population size (number of nodes) 5000

r Relative cost of vaccination variable of interest

H Fraction of imitators variable of interest

*For each network structure, transmission probability was chosen so as to
ensure that the average final size of the epidemic is approximately equal to 90%
of the total population. For Poisson network b̂b = 0.05, urban network b̂b = 0.06,
and exponential-scaled power law network b̂b = 0.52.
**The perceived probability a random contact is infected per epidemic (1{f)

was chosen to be constant, with value varying between 50–90%. For each value
of f, b was chosen such that (1{f)b~b̂b.
doi:10.1371/journal.pcbi.1002469.t001
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differences, and an individual with high payoff may adopt the

vaccination decision of a less successful role model. However,

for high values of a, Eq. 7 changes abruptly at DPi?j = 0,

meaning that imitators are highly responsive to payoff

differences (Figure 1). Eq. 7, also known as the Fermi function

[26,31], has been widely used to model strategy changes

induced by imitation behavior [26,31,32].

Contact networks
We compare vaccination dynamics across three different classes

of networks: a pseudo-empirical urban network based on contact

patterns within Vancouver, Canada [9], a homogeneous random

network with a Poisson degree distribution, parameterized so that

the average degree is equal to that of the urban network, and a

highly heterogeneous, power law network in which degrees follow

a truncated power law distribution. Let Pk denote the probability

that a randomly selected individual in a network has degree k. The

Poisson network is given by Pk~(mk=k!) exp ({m)with mean

contact number m~17:7; the power law network is given by

Ck{2 exp ({k=100) with mean contact number of 4.5 (Figure 2).

We calibrate epidemic parameters to ensure that infection risk in

an unvaccinated population is equal across all network structures

[33,34]. More precisely, we calibrate the value of disease

transmission probability to ensure that the average final epidemic

size is equal across the population structures. We chose the final

size to be equal to 90%, although results were found to be

qualitatively robust for a range of final sizes. For each network, the

population size N was equal to 5000. The contact networks are

generated using the configuration model (CM) algorithm for

constructing finite random networks with a specified degree

sequence [35,36]. We generated degree sequences by choosing

random deviates from these degree distributions.

To investigate the effect of imitation behavior on vaccination

and disease outbreaks, we assumed that the perceived transmission

probability (1{f)b is equal to the transmission probability of the

infectious disease.

Monte Carlo simulations
We perform Monte Carlo simulations on vaccinating opinion

formation and disease transmission according to these four steps:

(i) Generate the contact network

(ii) Randomly sample H=N individuals from the entire

population N and assume they are imitators. Imitators will

update their vaccination decisions according to the

imitation model. The rest of the population updates their

decisions so as to maximize their perceived benefits of

vaccination. We vary H from 0 to 1.

(iii) Randomly assign each individual a vaccination decision (i.e.,

vaccinate or not vaccinate) such that the initial vaccination

coverage is between 0% and 100%, and then run the model,

using a parallel update rule, until a steady state is reached.

The steady state is reached when the difference in mean

vaccination coverage over three consecutive time windows

(N steps) is sufficiently small (,0.005). Each individual gets

vaccinated according to its vaccination strategy. Vaccinated

individuals are immune to infection.

Figure 3. Vaccination coverage as a function of the relative cost of vaccination (r) and the fraction of imitators (H) in a (A)
homogenous Poisson network, (B) urban network, and (C) exponentially-scaled power law network. Parameters: Population size
N = 5000, recovery rate g = 0.25 d21, a= 5.
doi:10.1371/journal.pcbi.1002469.g003
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(iv) Run the standard SIR (susceptible – infected – removed)

epidemic model on the network generated in step (i) with the

final vaccination decisions reached in step (iii). The infection

is introduced by inoculating 10 randomly chosen susceptible

individuals to minimize stochastic fadeout. At each time

step, each susceptible individual i is infected with probability

1{(1{b̂b)Ni
inf , where b̂b is the transmission probability of the

infectious disease and Ni
inf is the number of infected

neighbors of individual i. An infected individual recovers

and becomes immune with probability g per time step. We

run the model until no infection exists in the system.

(v) In our analyses, baseline parameter values (Table 1) are

used unless stated otherwise. We vary the relative cost of

vaccination from 0 to 1. The equilibrium results represent

the averages over 100 iterations of step (iv) in 100

independent simulations (step (ii)–(iv)).

Results

Equilibrium vaccination coverage
We found that imitation (H) tends to increase vaccination

coverage when the cost of vaccination (r) is low and to decrease

vaccination coverage when r is high (Figure 3). However, the effect

of imitation varies with the degree of distribution of the contact

network (Figure 3). Comparing two extreme cases of H (H~0:

fully payoff maximization and H~1: fully imitation), imitation

dynamics (H~1) can promote near-universal coverage when the

cost of vaccination is very low compared to that of infection (small

values of r) (Figure 3). This difference is particularly pronounced in

the power law network.

Individuals have a high incentive to vaccinate when the relative

cost of vaccination (r) is low, and not to vaccinate when it is high.

Moreover, when most of an individual’s neighbors adopt a given

Figure 4. Frequency of vaccination as a function of the number of neighbors an individual has for the two extreme cases: fully
payoff maximization (H = 0) and fully imitation (H = 1). The homogeneous Poisson network is represented by (A,D), the urban network by
(B,E), and the exponential-scaled power law network by (C,F). (A–C) the relative cost of vaccination r = 0.1; (D–E) r = 0.7. The solid line represents the
average degree of the network, and the dashed line represents the average excess degree of the network. The average excess degree is a measure of
the tendency to which individuals with high degree are connected to individuals with low degree, and vice versa [11].
doi:10.1371/journal.pcbi.1002469.g004
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strategy, an individual has more incentive to adopt the opposite

strategy. That is, if an individual is surrounded by vaccinators,

their risk of infection and resulting incentive to vaccinate will both

be low; if an individual is surrounded by non-vaccinators, their risk

of infection and incentive to vaccinate will be high. However,

imitators have a non-zero probability of copying the vaccination

strategy that is adopted by most of their neighbors, even when

such a strategy may be less suboptimal for them. For low values of

r, payoff maximizers have a high incentive to vaccinate, and thus

imitators are likely to have vaccinators as role models; the opposite

should be true under high values of r. Therefore, for low values of

r, imitators may have higher vaccination coverage than payoff

maximizers, whereas for high values of r, imitation may lead to

fewer vaccinators than anticipated by payoff maximization

strategy (Figures 3 and 4).

The power law network was shown to be more sensitive to the

effect of imitation behavior than Poisson and Urban networks

(Figures 3 and 4). This is due to the fact that the power law

network has a highly skewed degree distribution, with a small

density of highly-connected individuals. Highly-connected indi-

viduals (hubs) have a high incentive to vaccinate, whereas

individuals with few contacts have less incentive to vaccinate. By

imitating their highly-connected neighbors, individuals with few

contacts become more likely to vaccinate, which may substantially

increase vaccination coverage (Figures 3 and 5). However, this

increase of vaccination coverage overall decreases the incentive for

hubs to vaccinate (Figure 5). Depending on the density of hubs and

the value of the relative cost of vaccination, this decrease in the

incentive of hubs to vaccinate may reduce the total vaccination

coverage within the population (Figure 3).

Final size of outbreak
We found that imitation (H) increases the final size of the

outbreak (i.e., the fraction of the population infected) for

intermediate costs of vaccination (r) (Figure 6). Numerical

investigation showed that this range of values, which varies with

Figure 5. Vaccination coverage of imitators and payoff maximizers as a function of the relative cost of vaccination (r) for the
portion of imitators equals to H = 0.2, H = 0.5, H = 0.8. The homogeneous Poisson network is represented by (A,B,C), the urban network by
(D,E,F), and the exponential-scaled power law network by (G,H,I).
doi:10.1371/journal.pcbi.1002469.g005
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the contact network (Figure 6), has an upper bound that represents

the value of r above which it is disadvantageous for anyone to

vaccinate, resulting in a full blown epidemic, and a lower bound

which represents the value of r below which the average final

epidemic size was less than twice the size of the initial inoculum of

10 infected individuals. Imitation dynamics can increase the

vaccination coverage relative to a population with payoff

maximization strategy, when the cost of vaccination is low, but

can never decrease the final epidemic size (Figures 3 and 6). As a

result of behavioral clustering that emerges from imitation

dynamics, the size of the epidemic does not necessarily decrease

as vaccination coverage increases. That is, vaccinators tend to

contact vaccinators, and non-vaccinators tend to contact non-

vaccinators (Figure 7). Because herd immunity is considerably high

in these pockets of vaccinators, further vaccination within these

pockets reduces transmission to a lesser degree than if vaccination

were increased in regions of the network with relatively low

vaccination coverage. The clusters of non-vaccinators fuel

transmission and increase the probability of an outbreak. This

effect of imitation is most prominent when vaccination coverage is

close to the herd immunity threshold (Figures 3 and 6).

Sensitivity analysis for the responsiveness to differences
of payoff

To investigate the sensitivity of our results to the degree to

which imitators respond to payoff differences between themselves

and their neighbors, we compared weak responsiveness to strong

responsiveness (Figure 2). For strong responsiveness, individuals

reliably copy the strategy of successful neighbors. However, if most

neighbors of an imitator adopt a given strategy, then the opposite

strategy becomes advantageous, and the imitator would be more

likely to choose the opposite strategy. Strong responsiveness,

relative to weak responsiveness, leads imitators to rarely copy

unsuccessful neighbors (Figure 2). Therefore, as the degree of

responsiveness increases (a = 15), vaccination coverage under pure

imitation (H~1) tends to converge towards the vaccination level

predicted by the payoff maximization equilibrium (Figures 3 and

8). A similar convergence occurs for final epidemic size (result not

shown here).

Discussion

Classic economic theory has not considered the reality that

individuals frequently imitate others [2,3,24,31,37]. Imitation

begins with simple behaviors in infancy and evolves into more

complex behaviors in childhood and adulthood [31,37]. In the

context of epidemiology, imitation behavior can influence

vaccination patterns and thus the dynamics of disease outbreaks

[2,3,24]. In this work, we address the impact of imitation on

vaccination coverage, disease prevalence, and the herd immunity

threshold. We develop a model that allows contact patterns to be

heterogeneous and individuals to incorporate varying degrees of

imitation into decision-making. Individuals within a social contact

network can switch between the strategies of vaccinating and not

vaccinating. An individual’s decision regarding whether to

vaccinate is affected by the strategies that their neighbors have

adopted or the perceived net benefits of vaccination. Monte Carlo

simulations show that imitation dynamics increase the equilibrium

vaccination coverage when vaccination cost is relatively low and

may decrease vaccination coverage when vaccination is costly. In

both cases, imitation actually exacerbates disease transmission

Figure 6. Epidemic size as a function of the relative cost of vaccination (r) and the fraction of imitators (H) in a (A) homogenous
Poisson network, (B) urban network, and (C) exponentially-scaled power law network.
doi:10.1371/journal.pcbi.1002469.g006
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Figure 7. Average number of contacts between non-vaccinators as a function of the fraction of imitators (H) and the relative cost of
vaccination (r) in a (A) homogenous Poisson network, (B) urban network, and (C) exponentially-scaled power law network.
doi:10.1371/journal.pcbi.1002469.g007

Figure 8. Vaccination coverage under strong responsiveness to differences of payoff (a = 15) in a (A) homogenous Poisson network,
(B) urban network, and (C) exponentially-scaled power law network. Vaccine coverage is given as a function of r for the two extreme cases:
fully payoff maximization (H= 0) and fully imitation (H= 1). Parameters are identical to Table 1, except a= 15.
doi:10.1371/journal.pcbi.1002469.g008
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when vaccination is inexpensive through the social clustering of

non-vaccinators. The detrimental effects of imitation are most

prominent when the vaccination is close to the herd immunity

threshold.

Salathe and Bonhoeffer recently developed a vaccination

opinion formation model to reveal that opinion clustering

increases the size of an epidemic [29]. Their model assumed that

opinions are determined by the proportion of neighbors that have

the same opinion about vaccination, such that whenever an

individual switches opinion, another individual has to switch the

opinion in an opposite way in order to maintain constant

vaccination coverage level [29]. Extending this previous seminal

model, we consider both imitation (opinion formation) and payoff

maximization consideration (individuals are not just blindly

imitating neighbors; they are trying to optimize a payoff function).

Our model thereby recognizes that vaccine decision-making is not

a purely imitative process, and often depends on actual health

considerations. Additionally, by incorporating payoffs, we are able

to analyze the impact of vaccine cost on the dynamics of

vaccination.

This analysis takes an initial step towards understanding the

combined impacts of payoff maximization and imitative decision-

making on vaccination coverage and epidemiological dynamics.

The model, however, rests on several simplifying assumptions. For

example, the contact networks are assumed to remain static

throughout the epidemic, and to be identical for both disease and

behavioral transmission. These assumptions could be relaxed by

incorporating temporal changes in network structure [38], and

modeling multiple different edge types (e.g. individual variation in

susceptibility and infectivity) [39]. The model can also be extended

to allow individuals to follow mixed vaccination strategies, or by

incorporating the effects of past epidemics on vaccine decision-

making [40].

We find that imitation leads to clustering of susceptible

individuals, which may exacerbate outbreaks of infectious diseases.

For example, imitation may explain how outbreaks of measles

have occurred in countries with high overall vaccination coverage

[26,29,41,42]. Given that vaccine decisions are likely to be

influenced by social contacts [29,32,41] and that such imitation

can have detrimental epidemiological effects [29], it is important

that policy makers understand its causes, magnitude, and

implications for disease elimination.

Our findings indicate that the common assumptions of simple

payoff maximization and homogeneous mixing can lead to

misestimates of the level of vaccination coverage necessary to

control a disease outbreak. Our model provides a general

framework for investigating the effect of imitation on vaccination

decision-making and disease outbreaks. The model can be applied

to study the interactions between behavior, public health, and

epidemic dynamics for specific infectious diseases. Data describing

real world imitation behavior in vaccination decision-making will

be critical to future public health applications of the model.
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