27 research outputs found

    Preemptive scheduling on uniform parallel machines with controllable job processing times

    Get PDF
    In this paper, we provide a unified approach to solving preemptive scheduling problems with uniform parallel machines and controllable processing times. We demonstrate that a single criterion problem of minimizing total compression cost subject to the constraint that all due dates should be met can be formulated in terms of maximizing a linear function over a generalized polymatroid. This justifies applicability of the greedy approach and allows us to develop fast algorithms for solving the problem with arbitrary release and due dates as well as its special case with zero release dates and a common due date. For the bicriteria counterpart of the latter problem we develop an efficient algorithm that constructs the trade-off curve for minimizing the compression cost and the makespan

    Single machine scheduling with controllable processing times by submodular optimization

    Get PDF
    In scheduling with controllable processing times the actual processing time of each job is to be chosen from the interval between the smallest (compressed or fully crashed) value and the largest (decompressed or uncrashed) value. In the problems under consideration, the jobs are processed on a single machine and the quality of a schedule is measured by two functions: the maximum cost (that depends on job completion times) and the total compression cost. Our main model is bicriteria and is related to determining an optimal trade-off between these two objectives. Additionally, we consider a pair of associated single criterion problems, in which one of the objective functions is bounded while the other one is to be minimized. We reduce the bicriteria problem to a series of parametric linear programs defined over the intersection of a submodular polyhedron with a box. We demonstrate that the feasible region is represented by a so-called base polyhedron and the corresponding problem can be solved by the greedy algorithm that runs two orders of magnitude faster than known previously. For each of the associated single criterion problems, we develop algorithms that deliver the optimum faster than it can be deduced from a solution to the bicriteria problem

    Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines

    Get PDF
    In this paper, we study a scheduling problem on a single machine, provided that the jobs have individual release dates and deadlines, and the processing times are controllable. The objective is to find a feasible schedule that minimizes the total cost of reducing the processing times. We reformulate the problem in terms of maximizing a linear function over a submodular polyhedron intersected with a box. For the latter problem of submodular optimization, we develop a recursive decomposition algorithm and apply it to solving the single machine scheduling problem to achieve the best possible running time

    Decomposition algorithms for submodular optimization with applications to parallel machine scheduling with controllable processing times

    Get PDF
    In this paper we present a decomposition algorithm for maximizing a linear function over a submodular polyhedron intersected with a box. Apart from this contribution to submodular optimization, our results extend the toolkit available in deterministic machine scheduling with controllable processing times. We demonstrate how this method can be applied to developing fast algorithms for minimizing total compression cost for preemptive schedules on parallel machines with respect to given release dates and a common deadline. Obtained scheduling algorithms are faster and easier to justify than those previously known in the scheduling literature

    Machine speed scaling by adapting methods for convex optimization with submodular constraints

    Get PDF
    In this paper, we propose a new methodology for the speed-scaling problem based on its link to scheduling with controllable processing times and submodular optimization. It results in faster algorithms for traditional speed-scaling models, characterized by a common speed/energy function. Additionally, it efficiently handles the most general models with job-dependent speed/energy functions with single and multiple machines. To the best of our knowledge, this has not been addressed prior to this study. In particular, the general version of the single-machine case is solvable by the new technique in O(n2) time

    Minimising the number of gap-zeros in binary matrices

    Get PDF
    We study a problem of minimising the total number of zeros in the gaps between blocks of consecutive ones in the columns of a binary matrix by permuting its rows. The problem is referred to as the Consecutive Ones Matrix Augmentation Problem, and is known to be NP-hard. An analysis of the structure of an optimal solution allows us to focus on a restricted solution space, and to use an implicit representation for searching the space. We develop an exact solution algorithm, which is linear-time in the number of rows if the number of columns is constant, and two constructive heuristics to tackle instances with an arbitrary number of columns. The heuristics use a novel solution representation based upon row sequencing. In our computational study, all heuristic solutions are either optimal or close to an optimum. One of the heuristics is particularly effective, especially for problems with a large number of rows

    Necessary and sufficient optimality conditions for scheduling unit time jobs on identical parallel machines

    Get PDF
    In this paper we characterize optimal schedules for scheduling problems with parallel machines and unit processing times by providing necessary and sufficient conditions of optimality. We show that the optimality conditions for parallel machine scheduling are equivalent to detecting negative cycles in a specially defined graph. For a range of the objective functions, we give an insight into the underlying structure of the graph and specify the simplest types of cycles involved in the optimality conditions. Using our results we demonstrate that the optimality check can be performed by faster algorithms in comparison with existing approaches based on sufficient conditions
    corecore