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In this paper, we study a scheduling problem on a single machine, provided that the jobs have individual
release dates and deadlines, and the processing times are controllable. The objective is to find a feasible

schedule that minimizes the total cost of reducing the processing times. We reformulate the problem in terms
of maximizing a linear function over a submodular polyhedron intersected with a box. For the latter problem
of submodular optimization, we develop a recursive decomposition algorithm and apply it to solving the single
machine scheduling problem to achieve the best possible running time.
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1. Introduction
We consider a scheduling problem on a single ma-
chine, provided that the processing times of the jobs
are controllable and each job has a release date and
a deadline. The objective is to determine the actual
durations of jobs from given intervals and to find
a feasible preemptive schedule such that the total
cost of compressing the processing times is mini-
mized. This area of scheduling has been active since
the 1980s, see surveys by Nowicki and Zdrzałka
(1990) and Shabtay and Steiner (2007). The corre-
sponding models are applicable to production, make-
or-buy decision making, supply chain management,
and imprecise computation.
In this paper, we study the general version of the

single machine model in which the jobs are available
at arbitrary, nonequal release times and should be
completed by their individual deadlines, which can
also be different for different jobs. The main outcome
of our study implies that this problem with control-
lable processing times is no harder in terms of its com-
putational complexity than its counterpart with fixed
processing times. In the latter problem it is required to
verify whether there exists a feasible schedule meet-
ing the deadline and release time constraints.

Our approach is based on submodular optimiza-
tion techniques. It continues the line of research initi-
ated by Shakhlevich and Strusevich (2005, 2008) and
explores a close link between scheduling with con-
trollable processing times and linear programming
problems with submodular constraints. Our papers
Shakhlevich et al. (2009) and Shioura et al. (2013)
can be viewed as convincing examples of a positive
mutual influence of scheduling and submodular opti-
mization. This paper, which builds upon Shakhlevich
et al. (2008), makes another contribution toward the
development of solution procedures for problems of
submodular optimization and their applications to
scheduling models. The efficiency of the proposed
approach is a result of the following two factors:
(i) the decomposition approach that breaks down the
problem into smaller subproblems, and (ii) a new spe-
cial technique for finding so-called instrumental sets
in each stage of the decomposition approach, which
serves as the basis for defining the subproblems. As
a result, we arrive at an algorithm that solves the
problem with n jobs in O4n logn5 time, which is best
possible.
The paper is organized as follows. Section 2 gives

a formal description of the scheduling model under
consideration. For completeness, we include a review
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of the relevant results for more general models, with
identical and uniform machines, with fixed and con-
trollable processing times. We stress that for the
parallel machines, the problems with controllable pro-
cessing times are no harder in terms of their compu-
tational complexity than their counterparts with fixed
processing times, whereas there is a time complex-
ity gap between the running times of the best known
algorithms for the single-machine version of the prob-
lem. To close this gap, we reformulate the problem
with controllable processing times in terms of sub-
modular optimization and develop a novel decom-
position algorithm for solving problems of this type.
Section 3 provides the necessary information on sub-
modular optimization and establishes its link with
the single machine problem under consideration. Sec-
tion 4 studies a linear programming problem over a
submodular polyhedron intersected with a box and
develops a recursive decomposition algorithm for its
solution. The application of the developed decom-
position algorithm to the single machine problem to
minimize total compression cost is discussed in §5.
The concluding remarks are contained in §6.

2. Review of Scheduling with Fixed
and Controllable Processing Times

In this section, we present a formal description of the
scheduling problems under consideration. We pro-
vide their meaningful interpretations and give a brief
review of the results for the problems of finding a
feasible preemptive schedule, provided that the pro-
cessing times are fixed, as well as for problems with
controllable processing times to minimize total com-
pression cost.
Formally, in the main scheduling model under con-

sideration, the jobs of set N = 81121 0 0 0 1n9 have to be
processed on a single machine M1. For completeness,
in this section we also review the models in which
the jobs of set N are processed on parallel machines
M11M21 0 0 0 1Mm, where m ≥ 2. For each job j ∈ N , its
processing time p4j5 is not given in advance but has to
be chosen by the decision maker from a given interval
6p4j51 p̄4j57. Such a decision results in compression of
the longest processing time p̄4j5 down to p4j5, and the
value x4j5= p̄4j5−p4j5 is called the compression amount
of job j . Compression may decrease the completion
time of each job j but incurs additional cost w4j5x4j5,
where w4j5 is a given non-negative unit compression
cost. The total costs associated with a choice of the
actual processing times is represented by the linear
function

∑

j∈N w4j5x4j5.
Notice that the described model is historically the

first scheduling model with controllable processing
times that traces back to the 1980s; see Nowicki and
Zdrzałka (1990) for a review of earlier results on

these models, other than the model studied in this
paper. A popular alternative model that emerged after
2000 assumes that the actual processing time of a job
is expressed as a ratio of the “normal” processing
time to a (possibly, nonlinear convex) function that
depends on an amount of a non-renewable resource
allocated to the job. The survey by Shabtay and
Steiner (2007) reviews the body of research on both
mentioned models with controllable times. The lat-
ter model is also closely related to models of power-
aware scheduling, in which the speed of a processor is
affected by the amount of provided energy; see, e.g.,
Bansal et al. (2009) and Bunde (2009).
In the problem studied in this paper, each job j ∈N

is given a release date r4j5, before which it is not avail-
able, and a deadline d4j5, by which its processing must
be completed. In the processing of any job, preemption
is allowed, so that the processing can be interrupted
at any time and resumed later. It is not allowed to
process more than one job at a time.

In what follows, we only discuss scheduling prob-
lems with distinct release dates and deadlines. A re-
view on problems with a common deadline or equal
release dates can be found in Shioura et al. (2013).
Provided that the processing time of a job j ∈N is

equal to p4j5, a feasible schedule guarantees that no
job is processed outside the time interval 6r4j51 d4j57.
Given a schedule, let C4j5 denote the completion time
of job j , i.e., the time at which the last portion of job j
is finished.

If there are m parallel machines, we distinguish
between the identical machines and the uniform
machines. In the former case, the machines have the
same speed, so that for a job j with an actual pro-
cessing time p4j5 the total length of the time intervals
in which this job is processed in a feasible schedule
is equal to p4j5. If the machines are uniform, then it
is assumed that machine Mi has speed si, 1 ≤ i ≤ m,
which defines the speed-up factor for jobs (or parts of
jobs) allocated to machine Mi.

For a given machine environment, the problem
of our primal concern is to determine the values
of actual processing times and to find the corre-
sponding feasible preemptive schedule so that all jobs
meet their deadlines and total weighted compres-
sion cost is minimized. Adapting standard notation
for scheduling problems by Lawler et al. (1993), we
denote problems of this type by � � r4j51 p4j5 = p̄4j5−
x4j51pmtn1C4j5 ≤ d4j5 �

∑

w4j5x4j50 Here, in the first
field � we write 1 in the case of a single machine, P in
the case of m≥ 2 identical machines and Q in the case
of m ≥ 2 uniform machines. In the middle field, the
item r4j5 implies that the jobs have individual release
dates. We write p4j5 = p̄4j5− x4j5 to indicate that the
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processing times are controllable and xj is the com-
pression amount to be found. The abbreviation pmtn
is used to point out that preemption is allowed. The
condition C4j5≤ d4j5 reflects the fact that in a feasible
schedule the deadlines should be respected. Finally,
in the third field we write the objective function to be
minimized, which is the total compression cost.
Next, we use problem 1 � r4j5, p4j5 = p̄4j5 − x4j5,

pmtn, C4j5 ≤ d4j5 �
∑

w4j5x4j5 as an example to illus-
trate different interpretations and applications of
scheduling with controllable processing times.
A range of scheduling models relevant to our

study belongs to the area of imprecise computation;
see Leung (2004) for a recent review. In computing
systems that support imprecise computation, some
computations (image processing programs, imple-
mentations of heuristic algorithms, etc.) can be run
partially, producing less precise results. In our nota-
tion, a task with a processing requirement p̄4j5 can
be split into a mandatory part that takes p4j5 time,

and an optional part that may take up to p̄4j5− p4j5
additional time units. To produce a result of reason-
able quality, the mandatory part must be completed
in full, whereas an optional part improves the accu-
racy of the output. If instead of an ideal computation
time p̄4j5 a task is executed for p4j5= p̄4j5− x4j5 time,
then computation is imprecise and x4j5 corresponds
to the error of computation. Typically, the problems
of imprecise computation are those of finding a dead-
line feasible preemptive schedule either on a single
machine or on parallel machines. A popular objective
function is

∑

w4j5x4j5, which is interpreted here as the
total weighted error. It is surprising that until very
recently, the common underlying model for problems
with controllable processing times and those of impre-
cise computation has not been noticed. Even the most
recent survey by Shabtay and Steiner (2007) makes no
mention of the imprecise computation research.
Scheduling problems with controllable processing

times also serve as mathematical models in make-
or-buy decision making; see, e.g., Shakhlevich et al.
(2009). In manufacturing, it is often the case that
either the existing production capabilities are insuf-
ficient to fulfill all orders internally in time or the
cost of work in process of an order exceeds a desir-
able amount. Such an order can be partly subcon-
tracted. Subcontracting incurs additional cost but that
can be either compensated by quoting realistic dead-
lines for all jobs or balanced by a reduction in
internal production expenses. The make-or-buy deci-
sions should be taken to determine which part of
each order is manufactured internally and which is
subcontracted. For instance, problem 1 � r4j51 p4j5 =
p̄4j5 − x4j51pmtn1C4j5 ≤ d4j5 �

∑

w4j5x4j5 admits the
following interpretation. The internal production
facility is the machine, and the orders are the jobs

that arrive at their release dates r4j5. For each order
j ∈ N , the value of p̄4j5 is interpreted as the process-
ing requirement, provided that the order is manu-
factured internally in full, whereas p4j5 is a given
mandatory limit on the internal production. Further,
p4j5 = p̄4j5− x4j5 is the chosen actual time for inter-
nal manufacturing, where x4j5 shows how much of
the order is subcontracted and w4j5x4j5 is the cost of
this subcontracting. Thus, the problem is to minimize
the total subcontracting cost and to find a deadline-
feasible schedule for internally manufactured orders.
Each problem with controllable processing times

can be seen as an extension of the corresponding
problem, in which the processing times of all jobs
are fixed, i.e., equal to given values p4j511 ≤ j ≤ n.
We generically denote problems with fixed process-
ing times by � � r4j51pmtn1C4j5 ≤ d4j5 � �1 where � ∈
811P1Q9. These are essentially feasibility problems. To
solve such a problem means either to find a feasible
schedule if it exists or to report that a schedule does
not exist.
Now we review the results on these feasibil-

ity problems. For a problem � � r4j51pmtn1C4j5 ≤
d4j5 � �, divide the interval 6minj∈N r4j51maxj∈N d4j57
into subintervals by using the release dates r4j5 and
the deadlines d4j5 for j ∈ N . Let T = 4�01 �11 0 0 0 1 ��5,
where 1 ≤ � ≤ 2n− 1, be the increasing sequence of
distinct numbers in the list 4r4j51 d4j5 � j ∈N5. Intro-
duce the intervals Ik = 6�k−11 �k7, 1≤ k≤ �, and define
the set of all intervals I = 8Ik �1 ≤ k ≤ �9. Denote the
length of interval Ik by ãk = �k − �k−1.
For a set of jobs X ⊆ N , let �4X5 be a set function

that represents the total production capacity available
for the feasible processing of the jobs of set X. Then,
a feasible schedule exists if and only if the inequality

∑

j∈X

pj ≤ �4X5 (1)

holds for all sets X ⊆N .
For a particular problem, the function �4X5 can be

suitably defined. Interval Ik is available for processing
job j if r4j5≤ �k and d4j5≥ �k+1. For a job j , denote the
set of the available intervals by â4j5, where

â4j5= 8Ik ∈ I � Ik ⊆ 6r4j51 d4j5790 (2)

For a set of jobs X ⊆N , introduce set-functions

�14X5 =
∑

Ik∈
⋃

j∈X â4j5

ãk3 (3)

�P 4X5 = m
∑

Ik∈
⋃

j∈X â4j5

ãk0 (4)

Then for problem 1 � r4j51pmtn1C4j5 ≤ d4j5 � �
(or problem P � r4j51pmtn1C4j5 ≤ d4j5 � �5 a feasible
schedule exists if and only if inequality (1) holds for
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all sets X ⊆N for �4X5= �14X5 (respectively, �4X5=
�P 4X5). Such a statement (in different terms) was first
formulated by Gordon and Tanaev (1973) and Horn
(1974). For the uniform machines, the corresponding
representation of the total processing capacity in the
form of a set-function �Q4X5 is defined by Shakhle-
vich and Strusevich (2008).

The single machine feasibility problem 1 � r4j5, pmtn,
C4j5≤ d4j5 � � in principle cannot be solved faster than
finding the sequence T = 4�01 �11 0 0 0 1 ��5 of the release
dates and deadlines. The best possible running time
O4n logn5 for solving problem 1 � r4j51pmtn1C4j5 ≤
d4j5 � � is achieved by an algorithm designed by Horn
(1974). This algorithm employs the EDF (earliest dead-
line first) scheduling policy, i.e., at any time it sched-
ules the job (or part of the job) that has the smallest
deadline among all available jobs. In fact, finding
sequence T is the most time-consuming part of the
algorithm; if sequence T is available, the remain-
ing steps of the algorithm can be implemented in
O4n5 time.
For parallel machine problems, it is efficient to refor-

mulate the problem of checking the inequalities (1) in
terms of finding the maximum flow in a special bipar-
tite network; see, e.g., Federgruen and Groenevelt
(1986). Using an algorithm by Ahuja et al. (1994), such
a network problem can be solved in O4n35 time and in
O4mn35 time, for problem P � r4j51pmtn1C4j5 ≤ d4j5 � �
and problem Q � r4j51pmtn1C4j5≤ d4j5 � �, respectively.

We now discuss known algorithms for solv-
ing problems � � r4j51 p4j5 = p̄4j5 − x4j51pmtn1C4j5 ≤
d4j5 �

∑

w4j5x4j5, where � ∈ 811P1Q9.
First, notice that for parallel machines the corre-

sponding problems can be reduced to either min-cost
flow problems or to parametric max-flow problems
in bipartite networks. The most efficient algorithms
are due to McCormick (1999), who develops an exten-
sion of the parametric flow algorithm by Gallo et al.
(1989), initially developed for arc capacities depen-
dent on a single common parameter, to the case
of several parameters. The approach of McCormick
gives the running times of O4n35 for problem
P � r4j51 p4j5= p̄4j5− x4j51pmtn1C4j5≤ d4j5 �

∑

w4j5x4j5
and of O4mn35 for problem Q � r4j51 p4j5 = p̄4j5 −
x4j51pmtn1C4j5 ≤ d4j5 �

∑

w4j5x4j5. Notice that the
algorithms by Gallo et al. (1989) and McCormick
(1999) are developed for the flow problems with zero
lower bounds on the arc capacities; in scheduling
terms that means zero lower bounds on processing
times, p4j5 = 0, j ∈ N . Still, the algorithms can be
extended to deal with non-zero lower bounds p4j5,
j ∈N , by standard network flow techniques.
The single machine problem 1�r4j51p4j5= p̄4j5−x4j5,

pmtn, C4j5≤d4j5�
∑

w4j5x4j5, for many years has been
an object of intensive study, mainly within the
body of research on imprecise computation. Problem

1 � r4j51 p4j5 = p̄4j5− x4j51pmtn1C4j5 ≤ d4j5 �
∑

w4j5x4j5
with controllable processing times is no easier than
problem 1 � r4j51pmtn1C4j5≤ d4j5 � �, a feasibility prob-
lem with fixed processing times. Thus, O4n logn5, the
best possible time for solving the latter problem is an
obvious lower bound on the running time required to
solve the former problem. The history of studies on
1 � r4j51 p4j5 = p̄4j5− x4j51pmtn1C4j5 ≤ d4j5 �

∑

w4j5x4j5
is a race for developing an O4n logn5-time algorithm.
Notice that McCormick’s approach, although appli-

cable in principle, does not lead to an algorithm faster
than O4n35 (or O4n2 log2 n5 if a network suggested by
Chung et al. 1989 and Shih et al. 1989 is used). There-
fore, scheduling reasoning is used in all known faster
algorithms.
Hochbaum and Shamir (1990) present two algo-

rithms for the problem with zero lower bounds
on the processing times. One of their algorithms
solves problem 1 � r4j51 p4j5 = p̄4j5− x4j51pmtn1C4j5 ≤
d4j5 �

∑

w4j5x4j5 in O4n25 time and the other solves
its counterpart 1 � r4j51 p4j5 = p̄4j5 − x4j51pmtn1C4j5 ≤
d4j5 �

∑

x4j5 with the unweighted objective function in
O4n logn5 time (or in O4n5 time if the sorted sequence
of release dates and deadlines is known). Hochbaum
and Shamir interpret the objective function as the total
(weighted) number of late (rejected) units of the jobs.
Their algorithm for the unweighted problem is of par-
ticular importance for this study, because we use its
extended form as a subroutine in §5.

Shih et al. (1991) study the general case of 1 � r4j5,
p4j5 = p̄4j5 − x4j51pmtn1C4j5 ≤ d4j5 �

∑

w4j5x4j5 and
1 � r4j51 p4j5= p̄4j5−x4j51pmtn1C4j5≤ d4j5 �

∑

x4j5 with
nonzero lower bounds on the processing times; the
proposed algorithms have the same time complexity
as those by Hochbaum and Shamir (1990). Notice that
it is fairly easy to incorporate nonzero lower bounds if
a network flow technique is used, whereas in an algo-
rithm that relies on scheduling reasoning a move from
zero lower bounds to nonzero ones requires addi-
tional effort.
Leung et al. (1994) give an algorithm for problem

1 � r4j51 p4j5 = p̄4j5− x4j51pmtn1C4j5 ≤ d4j5 �
∑

w4j5x4j5
that requires O4n logn+�n5 time, where � is the num-
ber of distinct weights w4j5.
Shih et al. (2000) develop an O4n log2 n5-time algo-

rithm, provided that the numbers p̄4j51 p4j51 r4j51 d4j5
are integers. The integrality assumption is essential
for the algorithm since one of its steps determines
what the authors call a “jam set,” and for a purpose
of its finding they modify some input values mak-
ing them noninteger and verify that any combination
of the processing times of jobs scheduled in a par-
ticular interval is not integer; see Shih et al. (2000,
Theorem 2).
Thus, unlike for the models on parallel machines,

for a single machine model there is a computa-
tional complexity gap: the feasibility problem 1 � r4j5,
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pmtn, C4j5≤ d4j5 � � is solvable in O4n logn5 time, but
for problem 1 � r4j5, p4j5 = p̄4j5 − x4j5, pmtn, C4j5 ≤
d4j5 �

∑

w4j5x4j5 with controllable processing times no
O4n logn5-time algorithm is known.
The main purpose of the remainder of this paper

is to design an algorithm that solves problem 1 � r4j5,
p4j5 = p̄4j5 − x4j5, pmtn, C4j5 ≤ d4j5 �

∑

w4j5x4j5 in
O4n logn5 time. The algorithm handles all instances,
with integer and real data. This time is the best pos-
sible since it matches the running time of the EDF
algorithm.

3. Review of Submodular
Optimization Concepts

To make this paper self-contained, in this section we
briefly describe the necessary concepts related to sub-
modular optimization and establish its links to the
scheduling problems of interest. Unless stated other-
wise, we follow the comprehensive monographs by
Fujishige (2005) and Schrijver (2003).
Let N = 81121 0 0 0 1n9 be a ground set, where n is

a positive integer, and 2N denote the family of all
subsets of N . For a subset X ⊆ N , let �X denote the
set of all vectors p with real components p4j5, where
j ∈ X. For two vectors p = 4p4151 p4251 0 0 0 1 p4n55 ∈ �

N

and q = 4q4151 q4251 0 0 0 1 q4n55 ∈ �
N , we write p ≤ q if

p4j5 ≤ q4j5 for each j ∈ N , and write p < q if p ≤ q
and p4j5 < q4j5 for some j ∈ N . Given a set U ⊆ �

N ,
a vector p ∈ U is called maximal in U if there exists
no vector q ∈U such that p< q. For a vector p ∈�

N ,
define p4X5=

∑

j∈X p4j5 for every set X ∈ 2N .
A set-function �2 2N →� is called submodular if the

inequality

�4X ∪Y 5+�4X ∩Y 5≤ �4X5+�4Y 5 (5)

holds for all sets X1Y ∈ 2N . For a submodular func-
tion � defined on 2N such that �4�5 = 0, the pair
42N 1�5 is called a submodular system on N , whereas �
is referred to as the rank function of that system.

For a submodular system 42N 1�5, define two
polyhedra

P4�5 = 8p ∈�
N �p4X5≤ �4X51 X ∈ 2N 91 (6)

B4�5 = 8p ∈�
N �p ∈ P4�51 p4N 5= �4N591 (7)

called a submodular polyhedron and base polyhedron,
respectively, associated with the submodular system.
Notice that B4�5 represents the set of all maximal vec-
tors in P4�5.
The main problem that we consider is as follows:

(LP): Maximize
∑

j∈N

w4j5p4j5

subject to p4X5≤ �4X51 X ∈ 2N 3

p4j5≤ p4j5≤ p̄4j51 j ∈N1

(8)

where �2 2N → � is a submodular function with
�4�5= 0, w ∈�

N
+ is a nonnegative weight vector, and

p̄1 p ∈ �
N are upper and lower bound vectors such

that 0≤ p≤ p̄.
Problem (LP) can be classified as a problem of max-

imizing a linear function over a submodular polyhe-
dron intersected with a box.
Any problem � � r4j51 p4j5= p̄4j5− x4j51pmtn1C4j5≤

d4j5 �
∑

w4j5x4j5 can be formulated as Problem (LP),
provided that function �4X5 is the total processing
capacity available for processing jobs of set X; see §2.
It is clear that a scheduling problem with controllable
processing times to minimize the total compression
cost

∑

w4j5x4j5 is equivalent to that of maximizing the
weighted sum

∑

w4j5p4j5 of actual processing times.
In particular, problem 1 � r4j5, p4j5= p̄4j5−x4j5, pmtn,

C4j5 ≤ d4j5 �
∑

w4j5x4j5 reduces to Problem (LP) with
�4X5= �14X5. Notice that the set function �14X5 of the
form (3) is submodular, which can be proved directly,
as is done, e.g., in Shakhlevich and Strusevich (2008).

In our previous work Shakhlevich et al. (2009), we
show that Problem (LP) can be reduced to an LP prob-
lem defined over a base polyhedron. This fact has
been of great importance for solving scheduling prob-
lems via submodular methods, see Shakhlevich et al.
(2009) and Shioura et al. (2013). It is an essential com-
ponent of our reasoning in this paper as well.
For the submodular polyhedron P4�5 associated

with a submodular system 42N 1�5 and vectors l,
u ∈�

N , we define polyhedrons

P4�5u = 8x ∈�
n �x ∈ P4�51 x≥ u93

P4�5l = 8x ∈�
n �x ∈ P4�51 x≥ l93

P4�5ul = 8x ∈�
n �x ∈ P4�51 l≤ x≤ u90

It is known (see, e.g., Fujishige 2005, Theorem 3.3)
that the set of maximal vectors of P4�5u forms a base
polyhedron B4�u5 associated with 42N 1�u5, where �u

is a rank function such that �u4�5 = 0 and �u4X5 =
minY∈2N 1Y⊆X8�4Y 5 + u4X\Y 59 for a nonempty set
X ∈ 2N . Similarly, the set of maximal vectors of P4�5l
is a base polyhedron B4�l5 associated with 42N 1�l5,
where �l is a rank function such that �l4�5 = 0 and
�l4X5 = minZ∈2N 1 X⊆Z8�4Z5 − l4Z\X59 for a nonempty
set X ∈ 2N ; see, e.g., Fujishige (2005), Corollary 3.5.

For the polyhedron P4�5ul , which is the intersection
of a submodular polyhedron with a box, the following
statement holds.

Theorem 1 (cf. Shakhlevich et al. 2009). (i) Poly-
hedron P4�5ul is nonempty if and only if l ∈ P4�5 and
l≤ u.
(ii) If P4�5ul is nonempty, then the set of maximal vec-

tors in P4�5ul is a base polyhedron B4�̃5 associated with the
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submodular system 42N 1 �̃5, where the submodular rank
function �̃2 2N →� is given by

�̃4X5=min
Y∈2N

8�4Y 5+u4X\Y 5− l4Y \X591 X ∈ 2N 0 (9)

Proof. Expressing the rank function �̃ in terms of
function �u, we obtain that for any nonempty set
X ∈ 2N the equality

�̃4X5= min
Z∈2N 1X⊆Z

8�u4Z5− l4Z\X59

holds. In turn, writing out �u4Z5, we deduce that

�̃4X5= min
Z∈2N 1X⊆Z

{

min
Y∈2N 1Y⊆Z

8�4Y 5+u4Z\Y 59− l4Z\X5
}

0

Observe that for X ⊆Z and Y ⊆Z,

l4Z\X5 = l4Y \X5+ l4Z\4X ∪Y 553

u4Z\Y 5 = u4X\Y 5+u4Z\4X ∪Y 551

which allows us to rewrite

�̃4X5 = min
Y 1Z∈2N 1X∪Y⊆Z

{

4�4Y 5+u4X\Y 5−l4Y \X55

+u4Z\4X∪Y 55−l4Z\4X∪Y 55
}

0

Since u4Z\4X∪Y 55− l4Z\4X∪Y 55≥ 0 and X∪Y ⊆Z,
the above minimum is achieved by Z = X ∪ Y , so
that Z can be removed, which yields (9). �

Throughout this paper, we assume that Prob-
lem (LP) has a feasible solution, which, due to claim (i)
of Theorem 1, is equivalent to the conditions p ∈ P4�5
and p≤ p̄. Moreover, Theorem 1 implies that Prob-
lem (LP) reduces to the following problem:

Maximize
∑

j∈N

w4j5p4j5

subject to p ∈ B4�̃51

(10)

where the rank function �̃2 2N → � is given by (9)
with l= p and u= p̄.

The benefit gained by such a reduction is that we
can use a well-known result of submodular optimiza-
tion, which states that a solution to the problem of
maximizing a linear function over a base polyhedron
can be obtained essentially in closed form, as pre-
sented in the following theorem.

Theorem 2 (cf. Fujishige 2005). Let j11 j21 0 0 0 1 jn be
an ordering of elements in N that satisfies

w4j15≥w4j25≥ · · · ≥w4jn50 (11)

Then, vector p∗ ∈�
N given by

p∗4jh5 = �̃48j11 0 0 0 1 jh−11 jh95− �̃48j11 0 0 0 1 jh−1951

h= 1121 0 0 0 1n (12)

is an optimal solution to the problem (10) (and also to the
problem (8)).

We use the obtained representation (10) of Prob-
lem (LP) in our decomposition algorithm presented
in §4.

4. Decomposition of LP problems
with Submodular Constraints

In this section, we describe a decomposition algo-
rithm for solving Problem (LP), i.e., an LP problem
defined over a submodular polyhedron intersected
with a box. In §4.1, we demonstrate that Problem (LP)
can be recursively decomposed into subproblems of
smaller dimensions, with some components of a solu-
tion vector fixed to one of their bounds. In §4.2, we
provide an outline of an efficient recursive decompo-
sition procedure. Important implementation details of
that procedure are presented in §4.3.

4.1. Fundamental Idea for Decomposition
In this section, we establish an important property,
which lays the foundation of our decomposition algo-
rithm for Problem (LP) of the form (8).

Lemma 1 demonstrates that some components of
an optimal solution can be fixed either at their upper
or lower bounds, whereas for some other components
their sum is fixed. Given a subset N̂ of N , we say that
N̂ is a heavy-element subset of N with respect to the
weight vector w if it satisfies the condition

min
j∈N̂

w4j5≥ max
j∈N\N̂

w4j50

For completeness, we also regard the empty set as a
heavy-element subset of N .

Given Problem (LP) and a set X ⊆N , in accordance
with (9) define a set Y∗ ⊆N such that the equality

�̃4X5= �4Y∗5+ p̄4X\Y∗5− p4Y∗\X51 (13)

holds. We call Y∗ an instrumental set for set X.

Lemma 1. Let N̂ ⊆ N be a heavy-element subset of N
with respect to w, and Y∗ ⊆N be an instrumental set for
set N̂ . Then, there exists an optimal solution p∗ of Prob-
lem (LP) such that

(a) p∗4Y∗5= �4Y∗51 (b) p∗4j5= p̄4j51 j ∈ N̂\Y∗1

(c) p∗4j5= p4j51 j ∈ Y∗\N̂ 0

Proof. Because N̂ is a heavy-element subset, there
exists an ordering j11 j21 0 0 0 1 jn of elements in N that
satisfies (11) and N̂ = 8j11 j21 0 0 0 1 jk9, where k = � N̂ � .
Theorems 1 and 2 guarantee that the solution p∗ given
by (12) is optimal. In particular, this implies

p∗4N̂ 5 = �̃4j15+
k
∑

i=2

4�̃48j11j210001ji95−�̃48j11j210001ji−1955

= �̃48j11j210001jk95= �̃4N̂ 50

Since p∗ is a feasible solution of Problem (LP), the
following conditions

p∗4Y∗5≤ �4Y∗51 p∗4j5≤ p̄4j51 j ∈ N̂\Y∗1

−p∗4j5≤−p4j51 j ∈ Y∗\N̂ (14)
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hold simultaneously. On the other hand, due to the
choice of set Y∗, we have

p∗4N̂ 5= �̃4N̂ 5= �4Y∗5+ p̄4N̂\Y∗5− p4Y∗\N̂ 51

which implies that each inequality of (14) must hold
as equality, and that is equivalent to the properties (a),
(b), and (c) in the lemma. �

In what follows, we use two fundamental opera-
tions on a submodular system 42N 1�5, as defined in
Fujishige (2005, §3.1). For a set A ∈ 2N , define a set-
function �A2 2A →� by

�A4X5= �4X51 X ∈ 2A0

Then, 42A1�A5 is a submodular system on A and
called a restriction of 42N 1�5 to A. On the other hand,
for a set A ∈ 2N define a set-function �A2 2

N\A →� by

�A4X5= �4X ∪A5−�4A51 X ∈ 2N\A0

Then, 42N\A1�A5 is a submodular system on N\A and
called a contraction of 42N 1�5 by A.
For an arbitrary set A ∈ 2N , Problem (LP) can be

decomposed into two subproblems of a similar struc-
ture by performing restriction of 42N 1�5 to A and con-
traction of 42N 1�5 by A, respectively. These problems
can be written as follows: for restriction as

4LP152 Maximize
∑

j∈A

w4j5p4j5

subject to p4X5≤ �A4X5= �4X51 X ∈ 2A1

p4j5≤ p4j5≤ p̄4j51 j ∈A1

and for contraction as

(LP2): Maximize
∑

j∈N\A

w4j5p4j5

subject to p4X5≤ �A4X5= �4X ∪A5−�4A51

X ∈ 2N\A1

p4j5≤ p4j5≤ p̄4j51 j ∈N\A0

We show that an optimal solution of the original
Problem (LP) can be easily restored from the optimal
solutions of these two subproblems. For every subset
A ⊆ N and vectors p1 ∈ �

A and p2 ∈ �
N\A, the direct

sum p1 ⊕p2 ∈�
N of p1 and p2 is defined by

4p1 ⊕ p254j5=

{

p14j51 if j ∈A3

p24j51 if j ∈N\A0

Lemma 2. Let A ∈ 2N , and suppose that q4A5= �4A5
holds for some optimal solution q ∈ �

N of Problem (LP).
Then,
(i) Each of problems (LP1) and (LP2) has a feasible

solution.

(ii) If a vector p1 ∈ �
A is an optimal solution of Prob-

lem (LP1) and a vector p2 ∈ �
N\A is an optimal solution

of Problem (LP2), then the direct sum p∗ = p1 ⊕ p2 ∈ �
N

of p1 and p2 is an optimal solution of Problem (LP).

The proof of this lemma is similar to that for
Lemma 3.1 in Fujishige (2005), and is therefore
omitted.
From Lemmas 1 and 2, we obtain the following

property, which is used recursively in our decompo-
sition algorithm.

Theorem 3. Let N̂ ⊆ N be a heavy-element subset of
N with respect to w, and Y∗ be an instrumental set for
set N̂ . Let p1 ∈�

Y ∗
and p2 ∈�

N\Y ∗
be optimal solutions of

the linear programs (LPR) and (LPC), respectively, where
(LPR) and (LPC) are given as

(LPR): Maximize
∑

j∈Y∗

w4j5p4j5

subject to p4X5≤�4X51 X∈2Y∗1

p4j5≤p4j5≤ p̄4j51 j ∈Y∗1

p4j5= p4j51 j ∈Y∗\N̂ 0

4LPC52 Maximize
∑

j∈N\Y∗

w4j5p4j5

subject to p4X5≤�4X∪Y∗5−�4Y∗51

X∈2N\Y∗1

p4j5≤p4j5≤ p̄4j51 j ∈N\Y∗1

p4j5= p̄4j51 j ∈ N̂\Y∗0

Then, the vector p∗ ∈ �
N given by the direct sum p∗ =

p1 ⊕p2 is an optimal solution of (LP).

Notice that Problem (LPR) is obtained from Prob-
lem (LP) as a result of restriction to Y∗ and the val-
ues of components p4j5, j ∈ Y∗\N̂ , are fixed to their
lower bounds in accordance with Property (c) of
Lemma 1. Similarly, Problem (LPC) is obtained from
Problem (LP) as a result of contraction by Y∗ and
the values of components p4j5, j ∈ N̂\Y∗, are fixed to
their upper bounds in accordance with Property (b)
of Lemma 1.

4.2. Recursive Decomposition Procedure
In this subsection, we describe how the original Prob-
lem (LP) can be decomposed recursively based on
Theorem 3, until we obtain a collection of trivially
solvable problems with no non-fixed variables. In
each stage of this process, the current LP problem
is decomposed into two subproblems, each with a
reduced set of variables, whereas some of the origi-
nal variables receive fixed values and stay fixed until
the end.
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Remark 1. The definition of a heavy-element set
can be revised to take into account the fact that some
variables may become fixed during the solution pro-
cess. The fixed variables make a fixed contribution
into the objective function so that the values of their
weights become irrelevant for further consideration
and can therefore be made, e.g., zero. This means that
a heavy-element set can be selected not among all
variables p4j5, j ∈ N , but only among the nonfixed
variables. Formally, if the ground set N is known to be
partitioned as N = L∪ F , where the variables p4j5 ∈ L
are nonfixed and the variable p4j5 ∈ F are fixed, then
L̂⊆ L is a heavy-element subset with respect to the weight
vector w if it satisfies the condition

min
j∈L̂

w4j5≥max
j∈L\L̂

w4j50

Notice that for this refined definition of a heavy-
element subset, Lemma 1 and Theorem 3 can be
appropriately adjusted.

In each stage of the recursive procedure, we need
to solve a subproblem that can be written in the fol-
lowing generic form:

LP4H1 F 1K1 l1u5

Maximize
∑

j∈H

w4j5p4j5

subject to p4Y 5≤ �H
K 4Y 5= �4Y ∪K5−�4K51

Y ∈ 2H1

l4j5≤ p4j5≤ u4j51 j ∈H\F 1

p4j5= u4j5= l4j51 j ∈ F 1
(15)

where
• H ⊆N is the index set of components of vector p;
• F ⊆H is the index set of fixed components, i.e.,

l4j5= u4j5 holds for each j ∈ F ;
• K ⊆N\H is the set that defines the rank function

�H
K 2 2

H →� such that

�H
K 4Y 5= �4Y ∪K5−�4K51 Y ∈ 2H3

• l= 4l4j5 � j ∈ H5 and u = 4u4j5 � j ∈ H5 are, respec-
tively, the current vectors of the lower and upper
bounds on variables p4j51 j ∈H . For j ∈N , each of l4j5
and u4j5 either takes the value of p4j5 or that of p̄4j5
from the original Problem (LP).
Throughout this paper, we assume that each Prob-

lem LP4H1 F 1K1 l1u5 is feasible. This is guaranteed by
Lemma 2 if the initial Problem (LP) is feasible.

The original Problem (LP) is represented as Prob-
lem LP4N1�1�1 p1 p̄5. For j ∈H , we say that the vari-
able p4j5 is a non-fixed variable if l4j5 < u4j5 holds, and
a fixed variable if l4j5 = u4j5 holds. If all the variables

in LP4H1 F 1K1 l1u5 are fixed, i.e., l4j5= u4j5 holds for
all j ∈H , then an optimal solution is uniquely deter-
mined by the vector u ∈�

H .
Consider a general case that Problem LP4H1 F 1

K1 l1u5 of the form (15) contains at least one non-
fixed variable, i.e., �H\F � > 0. In accordance with (9)
applied to function �H

K , we define a function �̃H
K 2 2

H →
� by

�̃H
K 4X5=min

Y∈2H
8�H

K 4Y 5+u4X\Y 5− l4Y \X590 (16)

By Claim (ii) of Theorem 1, the set of maximal fea-
sible solutions of Problem LP4H1 F 1K1 l1u5 is given
by a base polyhedron B4�̃H

K 5 associated with the func-
tion �̃H

K . Therefore, if �H\F � = 1 and H\F = 8j ′9, then
an optimal solution p∗ ∈�

H is given by

p∗4j5=

{

�̃H
K 48j

′951 j = j ′3

u4j51 j ∈ F 0
(17)

Suppose that �H\F � ≥ 2. Then, we call Proce-
dure Decomp4H1 F 1K1 l1u5 explained below. Let Ĥ ⊆
H\F be a heavy-element subset of H\F with respect
to the vector 4w4j5 � j ∈H\F 5, and Y∗ ⊆H be an instru-
mental set for set Ĥ , i.e.,

�̃H
K 4Ĥ5= �H

K 4Y∗5+u4Ĥ\Y∗5− l4Y∗\Ĥ50 (18)

Theorem 3, when applied to Problem LP4H1 F 1
K1 l1u5, implies that the problem is decomposed into
two subproblems

Maximize
∑

j∈Y∗

w4j5p4j5

subject to p4X5≤ �
Y∗
K 4X5= �4X ∪K5−�4K51

X ∈ 2Y∗1

l4j5≤ p4j5≤ l4j51 j ∈ Y∗\Ĥ1

l4j5≤ p4j5≤ u4j51 j ∈ Y∗ ∩ Ĥ1 (19)

and

Maximize
∑

j∈H\Y∗

w4j5p4j5

subject to p4X5≤�
H\Y∗
K∪Y∗

4X5=�4X∪K∪Y∗5

−�4K∪Y∗51 X∈2H\Y∗1

u4j5≤p4j5≤u4j51 j ∈Ĥ\Y∗1

l4j5≤p4j5≤u4j51 j ∈ 4H\Y∗5\4Ĥ\Y∗50 (20)

The first of these subproblems corresponds to Prob-
lem (LPR), and in that problem the values of com-
ponents p4j5, j ∈ Y∗\Ĥ , are fixed to their lower
bounds. The second subproblem corresponds to Prob-
lem (LPC), and in that problem the values of compo-
nents p4j5, j ∈ Ĥ\Y∗, are fixed to their upper bounds.
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We denote these subproblems by LP4Y∗1 F11K1
l11u15 and LP4H\Y∗1 F21K ∪ Y∗1 l21u25, respectively,
where the vectors l11u1 ∈ �

Y∗ and l21u2 ∈ �
H\Y∗ , and

the updated sets of the fixed variables F1 and F2 are
given by

l14j5= l4j51 j ∈Y∗1

u14j5=

{

l4j51 j ∈Y∗\Ĥ1

u4j51 j ∈Y∗∩Ĥ1
F1=Y∗\Ĥ1 (21)

l24j5=

{

u4j51 j ∈Ĥ\Y∗1

l4j51 j ∈H\4Y∗∪Ĥ51

u24j5=u4j51 j ∈H\Y∗1 F2= 4Ĥ∪4H∩F 55\Y∗0

(22)

Notice that Problem LP4Y∗1 F11K1 l11u15 inherits the
set of fixed variables Y∗ ∩ F from the problem of
a higher level, and additionally the variables of set
Y∗\Ĥ become fixed. However, since Ĥ contains only
non-fixed variables, we deduce that Y∗\Ĥ ⊇ Y∗ ∩ F ,
so that the complete description of the set F1 of
fixed variables in Problem LP4Y∗1 F11K1 l11u15 is given
by Y∗\Ĥ .
Problem LP4Y∗1 F21K ∪ Y∗1 l21u25 inherits the set of

fixed variables 4H\Y∗5 ∩ F from the problem of a
higher level, and additionally the variables of set
Ĥ\Y∗ become fixed. These two sets are disjoint. Thus,
the complete description of the set F2 of fixed vari-
ables in Problem LP4Y∗1 F21K1 l21u25 is given by 4Ĥ ∪
4H ∩ F 55\Y∗.

Without going into implementation details, we now
give a formal description of the recursive procedure,
that takes Remark 1 into account. For the current
Problem LP4H1 F 1K1 l1u5, we compute optimal solu-
tions p1 ∈ �

Y∗ and p2 ∈ �
H\Y∗ of the two subprob-

lems by calling procedures Decomp4Y∗1 F11K1 l11u15
and Decomp4H\Y∗1 F21K ∪ Y∗1 l21u25. By Theorem 3,
the direct sum p∗ = p1 ⊕ p2 is an optimal solution of
Problem LP4H1 F 1K1 l1u5, which is the output of the
Procedure Decomp4H1 F 1K1 l1u5.

Procedure Decomp4H1 F 1K1 l1u5
Step 1. If �H\F � = 0, then output the vector p∗ =

u ∈�
H and return.

If �H\F � = 1 and H\F = 8j ′9, then compute the
value �̃H

K 48j
′95, and output the vector p∗ given by (17)

and return.
Step 2. Select a heavy-element subset Ĥ of H\F with

respect to w, and determine an instrumental set Y∗ ⊆

H for set Ĥ , satisfying (18).
Step 3. Define the vectors l11u1 ∈ �

Y∗ and set F1
by (21).

Call Procedure Decomp4Y∗1 F11K1 l11u15 to obtain
an optimal solution p1 ∈ �

Y∗ of Problem LP4Y∗1
F11K1 l11u15.
Step 4. Define the vectors l21u2 ∈ �

H\Y∗ and set F2
by (22).

Call Procedure Decomp4H\Y∗1 F21K ∪ Y∗1 l21u25 to
obtain an optimal solution p2 ∈ �

H\Y∗ of Problem
LP4H\Y∗1 F21K ∪Y∗1 l21u25.
Step 5. Output the direct sum p∗ = p1⊕p2 ∈�

H and
return.
Recall that the original Problem (LP) is solved by

calling Procedure Decomp4N1�1�1 p1 p̄5. Its actual
running time depends on the choice of a heavy-
element subset Ĥ in Step 2 and on the time complex-
ity of finding set Y∗.
To reduce the depth of recursion of the procedure,

it makes sense to perform decomposition in such a
way that the number of non-fixed variables in each
of the two emerging subproblems is roughly a half of
g = �H\F � , the number of nonfixed variables in the
current Problem LP4H1 F 1K1 l1u5.

Lemma 3. If at each level of recursion of Proce-
dure Decomp for Problem LP4H1 F 1K1 l1u5 with g =

�H\F � > 1 a heavy-element subset Ĥ ⊆H\F in Step 2 is
chosen to contain �g/2� non-fixed variables, then the num-
ber of nonfixed variables in each of the two subproblems that
emerge as a result of decomposition is either �g/2� or �g/2�.

Proof. In Step 2 of Procedure Decomp4H1F 1K1
l1u5 select a heavy-element subset Ĥ ⊂ H\F that
contains �g/2� non-fixed variables, i.e., � Ĥ � = �g/2�.
Then, the number of the non-fixed variables in Prob-
lem LP4Y∗1 F11K1 l11u15 considered in Step 3 satisfies
�Y∗∩ Ĥ � ≤ �g/2�. Because of (22), the number of non-
fixed variables in Problem LP4H\Y∗1 F21K ∪ Y∗1 l21u25
considered in Step 4 satisfies

�H\4Ĥ ∪ F ∪Y∗5 � ≤ �H\Ĥ � =

⌊

g

2

⌋

0 �

Lemma 3 implies that the overall depth of recur-
sion of Procedure Decomp applied to the initial Prob-
lem LP4N1�1�1p1 p̄5 is O4logn5.

4.3. Finding an Instrumental Set
In each iteration of Procedure Decomp4H1 F 1K1 l1u5,
for the current heavy-element set Ĥ we need to find
an instrumental set Y∗ defined by (13) with X = Ĥ
that determines the pair of problems into which the
current problem is decomposed.
Most of the presented reasoning holds for any sub-

set of H . Throughout this section, X ⊆H denotes an
arbitrary set.
Formally speaking, for a given set X, the instru-

mental set Y∗ can be found by minimizing the sub-
modular function �H

K 4Y 5+ u4X\Y 5− l4Y \X5 over all
subsets Y of set H . Thus, Y∗ can be computed in
polynomial time by using any of the available algo-
rithms for minimizing a submodular function, see,
e.g., Schrijver (2000) or Iwata et al. (2001). However,
the running time of known algorithms is fairly large.
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In many special cases of Problem (LP), including
those related to scheduling applications, the value
�̃4X5 can be computed more efficiently without a
direct use of the submodular function minimiza-
tion; see, e.g., Shioura et al. (2013, 2015), where we
present algorithms for minimizing functions simi-
lar to �H

K 4Y 5 + u4X\Y 5 − l4Y \X5 that arise in solv-
ing scheduling problems with controllable processing
times on parallel machines by submodular methods.
In this paper, we describe another, rather universal
approach that is based on the following statement.

Theorem 4 (cf. Fujishige 2005, Corollary 3.4).
For a submodular system 42H1�5 and a vector b ∈�

H , the
equality

min
Y∈2H

8�4Y 5+ b4H\Y 59=max8p4H5 �p ∈ P4�51 p≤ b9

holds. In particular, if � is a polymatroid rank function and
b≥ 0, then the right-hand side is equal to max8p4H5 �p ∈
P4�5, 0≤ p≤ b9.

Given Problem LP4H1 F 1K1 l1u5 of the form (15),
for a set X ⊆H define the vector b ∈�

H by

b4j5=

{

u4j51 if j ∈X3

l4j51 if j ∈H\X0
(23)

Starting from (16), for a set X ⊆H transform

�̃H
K 4X5=min

Y∈2H
8�H

K 4Y 5+u4X\Y 5−l4Y \X59

=−l4H\X5+min
Y∈2H

8�H
K 4Y 5+u4X\Y5−l4Y \X5+l4H\X59

=−l4H\X5+min
Y∈2H

8�H
K 4Y 5+u4X\Y 5+l44H\X5\Y 59

=−l4H\X5+min
Y∈2H

8�H
K 4Y 5+b4H\Y 590

Since −l4H\X5 is a constant, to find an instrumental
set Y∗ that defines �̃

H
K 4X5 it suffices to find the set min-

imizer for minY∈2H 8�
H
K 4Y 5+b4H\Y 59, where the values

b4j5 depend on X, as seen from (23). By Theorem 4,
the latter minimization problem is equivalent to the
following auxiliary problem:

(AuxLP): Maximize
∑

j∈H

q4j5

subject to q4Y 5≤ �H
K 4Y 51 Y ∈ 2H3

0≤ q4j5≤ b4j51 j ∈H0

(24)

The following property is useful.

Lemma 4. For a set X ⊆ H , let q∗ ∈ �
H be an opti-

mal solution to the auxiliary linear program (24). Then
a set Y∗ is the required instrumental set for Problem
LP4H1 F 1K1 l1u5 of the form (15) with X ⊆ H if and
only if

q∗4Y∗5= �H
K 4Y∗53 q∗4j5= b4j51 j ∈H\Y∗1

where the values b4j5 are defined with respect to X.

Proof. By Theorem 4, Y∗ is the set minimizer for
minY∈2H 8�

H
K 4Y 5+ b4H\Y 59 if and only if

�H
K 4Y∗5+ b4H\Y∗5= q∗4H5= q∗4Y∗5+ q∗4H\Y∗50

Since vector q∗ ∈�
H is a feasible solution to the aux-

iliary linear program (24), we have

q∗4Y∗5≤ �H
K 4Y∗53 q∗4j5≤ b4j51 j ∈H\Y∗0

Hence, Y∗ is an instrumental set for set X if and only if
each inequality displayed above holds as equality. �

Notice that Lemma 4 holds for any set X ⊆H , but in
a particular iteration of Procedure Decomp the search
for an instrumental set is performed for the current
heavy-element set Ĥ .
Lemma 4 implies that once an optimal solution

q∗ ∈ �
H to the auxiliary LP problem (24) is obtained,

a required set Y∗ can be found by partitioning the
ground set H into two sets Y∗ and H\Y∗ so that
q∗4Y∗5= �H

K 4Y∗5 and q∗4j5= b4j5 for j ∈H\Y∗.
Observe that Problem (AuxLP) has a structure sim-

ilar to that of Problem (LP); in fact, for H = N Prob-
lem (AuxLP) is a special case of Problem (LP) with
the following points of difference:

(i) the objective function is the sum of the decision
variables, with all weights w4j5 equal to 1;
(ii) each decision variable has no lower bound (or

zero lower bound if in Problem (LP) � is a non-
negative rank function).

As follows from Lemma 4, for given Problem
LP4H1 F 1K1 l1u5 of the form (15), to find an instru-
mental set Y∗ for a chosen heavy-element set Ĥ ,
we may find an optimal solution q∗ ∈ �

H of Prob-
lem (AuxLP), in which the values b4j5 are defined
by (23) with respect to X = Ĥ , and then partition the
original set H into two sets Y∗ and H\Y∗ such that

q4Y∗5= �H
K 4Y∗53 q∗4j5= b4j51 j ∈H\Y∗0 (25)

In scheduling applications, solving Problem
(AuxLP) can be understood as solving a relaxed
version of the initial problem to minimize the total
compression cost, in which the unit compression
costs are all equal and the processing times have only
upper bounds. This is illustrated for problem 1 � r4j5,
p4j5= p̄4j5− x4j5, pmtn, C4j5≤ d4j5 �

∑

w4j5x4j5 in §5.

5. Solving Single Machine
Problem via Decomposition

As demonstrated in §3, problem

1�r4j51p4j5= p̄4j5−x4j51pmtn1C4j5≤d4j5
∣

∣

∣

∑

w4j5x4j5

can be reformulated as Problem (LP) with a non-
negative rank function �=�1 given by (3). Sec-
tion 4 presents a generic recursive decomposition
Procedure Decomp for solving Problem (LP). To adapt
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that procedure for solving Problem (LP) related
to problem 1�r4j5, p4j5= p̄4j5−x4j5, pmtn, C4j5≤
d4j5�

∑

w4j5x4j5 we only need to present implemen-
tation details of Steps 2–4 of a typical iteration of
ProcedureDecomp4H1F 1K1l1u5.
We start our consideration with Step 2, in which

an instrumental set Y∗ has to be found. Given Prob-
lem LP4H1 F 1K1 l1u5 of the form (15), for simplicity
of exposition, define � = �H

K . For a set X of jobs, a
meaningful interpretation of �4X5 is the total length
of the time intervals originally available for process-
ing the jobs of set X∪K after the intervals for process-
ing the jobs of set K have been completely used up.
Renumber the jobs of set H by the integers 1121 0 0 0 1h
in nonincreasing order of their release dates, i.e.,

r415≥ r425≥ · · · ≥ r4h53 (26)

additionally, we assume that if r4j5= r4j+15 for some
j ∈H then d4j5≤ d4j + 15 holds.
Recall that in §2, we have introduced a set I of �

time intervals initially available for processing the
jobs of set N . Problem LP4H1 F 1K1 l1u5 corresponds
to a single machine scheduling problem in which the
jobs of set K have already been scheduled, and the
jobs of set H must be scheduled in the remaining
available time intervals. Denote the set of these avail-
able intervals by IA, and assume that it consists of the
intervals

6��415−11 ��41571 6��425−11 ��42571 0 0 0 1 6��4�5−11 ��4�571

where 1 ≤ �415 < �425 < · · · < �4�5 ≤ h. Comparing
the sets I and IA, we see that the machine is busy
during the intervals

[

min
j∈H

r4j51 ��415−1

]

1 6��4151 ��425−171 6��4251 ��435−171 0 0 0 1

6��4�−151 ��4�5−171

[

��4�51max
j∈H

d4j5

]

0

We denote the set of these busy intervals by IB.
Select a heavy-element set Ĥ and define the values

b4j5 by (23) applied to X = Ĥ . Our goal is to find an
instrumental set Y∗ for set Ĥ . As described in §4.3,
for this purpose we may solve the auxiliary Prob-
lem (ULP)

(ULP): Maximize
∑

j∈H

q4j5

subject to q4X5≤ �4X51 X ∈ 2H1

0≤ q4j5≤ b4j51 j ∈H0 (27)

Problem (ULP) can be seen as a version of a
scheduling problem 1 � r4j5, q4j5 = b4j5 − x4j5, pmtn,
C4j5 ≤ d4j5 �

∑

x4j5, in which it is required to deter-
mine the actual processing times q4j5 of jobs of set H

to maximize the total (unweighted) actual processing
time, provided that these jobs can only be processed
in the intervals of set IA, and 0 ≤ q4j5 ≤ b4j5 for each
j ∈ H . Each job j ∈ H should be assigned an actual
processing time q4j5, where 0≤ q4j5≤ b4j5, so that all
jobs are scheduled within the � intervals of set IA, no
job j is scheduled outside the interval 6r4j51 d4j57 and
the total processing time

∑

j∈H q4j5 is maximized. No
confusion arises if we speak about an LP problem (27)
using its scheduling interpretation.

Problem (27) is related to the problem of mini-
mizing the total (unweighted) compression with zero
lower bounds on actual processing times. It can be
solved by algorithms developed by Hochbaum and
Shamir (1990) and Shih et al. (1991). In particular,
the algorithm by Hochbaum and Shamir (1990) uses
the UNION-FIND technique and guarantees that the
actual processing times of all jobs and the corre-
sponding optimal schedule are found in O4h5 time,
provided that the jobs are numbered in accordance
with (26). The algorithm is based on the latest-release-
date-first rule. Informally, the jobs are taken one by
one in the order of their numbering and scheduled
in a “backward” manner: each job j ∈ H is placed
into the current partial schedule to fill the available
time intervals consecutively, from right to left, starting
from the right-most available interval. The assign-
ment of a job j is complete either if its actual pro-
cessing time q4j5 reaches its upper bound b4j5 or if no
available interval within the interval 6r4j51 d4j57 is left
(recall that the intervals of set IB are seen as busy).
For our purposes, however, we not only need the

optimal values q∗4j5 of the processing times, but also
a set of jobs Y∗ ⊆H such that

q∗4Y∗5= �4Y∗51 q∗4j5= b4j51 j ∈H\Y∗0 (28)

We call a set Y ∗ that satisfies q∗4Y∗5 = �4Y∗5 in (28)
tight. In scheduling terms, for Problem (ULP) the jobs
of a tight set completely use all intervals available for
their processing. A job that belongs to some tight set
is called critical. The length of a critical job cannot
be extended (even ignoring its upper bound) without
compromising feasibility of the schedule. If a job j is
not critical, then the job does not use the whole inter-
val even if its processing time is fully extended (and
could have been extended further if we had ignored
the upper bound b4j5).
Only a slight modification of the Hochbaum-Shamir

algorithm, which does not affect its linear running
time, leads to finding the required tight set Y∗. In the
description of the algorithm the jobs are assumed to
be numbered in accordance with (26).
For a schedule that is feasible for Problem (ULP)

under consideration, an interval during which the
machine is permanently busy, possibly including the
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intervals from IB, is called a block. Recall that a sched-
ule delivered by the Hochbaum-Shamir algorithm can
be seen as a collection of blocks separated by idle
intervals.

Algorithm HSY
Step 1. Set Y 0

∗ 2=�.
Step 2. For each job k from 1 to h do
(a) Schedule job k in accordance with the algo-

rithm by Hochbaum and Shamir (1990).
(b) If in the current schedule the interval

6r4k51d4k57 has no idle time, then find a block Bk in
which job k completes and determine the set Y k of
all jobs that complete in the same block; define Y k

∗ 2=
Y k−1
∗ ∪ Y k0 Otherwise (i.e., if in the current sched-

ule the interval 6r4k51d4k57 has an idle time), define
Y k
∗ 2= Y k−1

∗ .
Step 3. Output Y∗ 2= Y h

∗ and stop.

In what follows we formulate the statements that
show that Algorithm HSY finds the set Y∗ correctly.
Each of the following lemmas is applied to sched-
ule Sk, which is the schedule found in Step 2(a) for
the jobs 11 0 0 0 1 k.

Lemma 5. In schedule Sk any job j ≤ k starts and fin-
ishes in one block.

Proof. Suppose 6t11 t27 and 6t31 t471 where t1 < t2 <
t3 < t4, are two consecutive blocks in Sk such that job
j1 j ≤ k1 is processed in each of these blocks. Because
of the feasibility of schedule Sk1 we have that r4j5 <
t2 < t3 <d4j5, i.e., the interval 6t21 t37 could be used for
processing job j , but is left idle. This contradicts to the
way the Hochbaum-Shamir algorithm operates. �

Lemma 6. If the interval 6r4k51d4k57 has no idle time
in schedule Sk, then Y k is a tight set.

Proof. Lemma 5 implies that in Step 2(b) of Algo-
rithm HSY, Y k is the set of jobs that start and
complete in block Bk. Since job k has the smallest
release date among all jobs in schedule Sk and the
interval 6r4k51d4k57 has no idle time, it follows that
block Bk contains the interval Î = 6r4k51 t7, where t =
max8d4j5 � j ∈ Y k9. Let � denote the total length of all
intervals of set IB within the interval Î . Then q∗4Y

k5=
t − r4k5− �. On the other hand, no job of set Y k can
start before time r4k5, complete after time t and be
assigned to the intervals of set IB, so that �4Y k5= t−
r4k5− �. Thus, q∗4Y

k5= �4Y k5. �

Note that the set Y∗, which is output in Step 3, is
given as the union of sets Y 11Y 21 0 0 0 1Y h, and each Y k

4k = 1121 0 0 0 1h5 is a tight set by Lemma 6. Since the
union of tight sets is again a tight set, the equality
q∗4Y∗5= �4Y∗5 holds.
For k ∈H , if 6r4k51d4k57 has no idle time in Sk, then

k is included in Y k, and therefore k ∈ Y k ⊆ Y∗ holds.

Hence, if k ∈H\Y∗, then 6r4k51d4k57 has idle time in Sk,
implying that q∗4k5= b4k5. Thus, set Y∗ found by the
algorithm satisfies the condition (28). This guaran-
tees that Algorithm HSY is correct, and set Y∗ is the
required instrumental set as a result of Lemma 4.

Recall that the Hochbaum-Shamir algorithm ma-
nipulates the intervals of machine availability orga-
nized in sets of contiguous intervals. In particular, it
uses the FIND function to determine the set that con-
tains any given original interval by retrieving the first
interval in that set. Moreover, it uses the procedure
UNION to merge two sets of intervals into a new
set. Because the Hochbaum-Shamir algorithm actually
determines the length of processing of each job k in
the original intervals of availability, the required block
Bk (the set of intervals that contains the latest inter-
val for processing job k) will be found (see Step 2(b)).
To determine the set Y k of the jobs in block Bk, we
assume that for each block (or a set of intervals) the
list of jobs assigned to be processed in this block is
maintained. Once the jobs of set Y k are added to set
Y k
∗ , the corresponding block together with its list of

jobs is deleted. When two sets of intervals merge (a
larger block is formed), the corresponding lists of jobs
are linked. Thus, the running time of the original algo-
rithm by Hochbaum and Shamir is not affected.

Thus, we have proved that Algorithm HSY solves
Problem (ULP) of the form (27) by scheduling h jobs
of set H in the � intervals of set IA and finds the cor-
responding set Y∗ that satisfies (28) in O4h+ �5 time.
By Lemma 4, the found set Y∗ is an instrumental set.

Now we describe how Problem LP4H1 F 1K1 l1u5
is decomposed in Steps 3 and 4 of Procedure
Decomp4H1 F 1K1 l1u5, provided that a heavy-element
subset Ĥ is selected and the corresponding instru-
mental set Y∗ is found. Determine

I ′ =
{

6�k−11 �k7 �k ∈ â4j5 for some j ∈ Y∗

}

1

where â4j5 is defined by (2). For problem (19) of pro-
cessing the jobs of set Y∗, we update IA 2= I ′ and let
�1 = � I ′ � . For problem (20) of processing the jobs of
set H\Y∗1 we update IA 2= IA\I

′ and let �2 = �−�1. The
other required updates are carried out in accordance
with (21) and (22).
Now we pass to analyzing the time complexity of

the algorithm. Recall that the release dates and dead-
lines are assumed sorted, which requires O4n logn5.
Let us estimate the running time of Proce-

dure Decomp applied to Problem LP4H1 F 1K1 l1u5.
We denote by TLP4h1g1�5 the time complexity of Pro-
cedure Decomp4H1 F 1K1 l1u5, where

h= �H � 1 g = �H\F � 1 � = � IA � 0

Let TY∗4h1g1�5 denote the running time for com-

puting the value �̃H
K 4Ĥ5 for a given set Ĥ ⊆H
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and for finding the corresponding instrumental
set Y∗. From the previous discussion, we have
TY∗4h1g1�5=O4h+ �5. In Steps 3 and 4, Procedure
Decomp splits Problem LP4H1 F 1K1 l1u5 into two sub-
problems: one with h1 variables, among which g1 vari-
ables are nonfixed, and �1 available intervals, and the
other subproblem with h2 = h− h1 variables, among
which g2 variables are nonfixed, and �2 available
intervals. By Lemma 3, we have

g1 ≤min8h11 �g/2�91 g2 ≤min8h21 �g/2�90

The required heavy-element set can be found in O4h5
time by using a linear-time median-finding algorithm.
Then, we obtain a recursive equation

TLP4h1g1�5

=























O4151 if g = 03

O4h+ �51 if g = 13

O4h+ �5+ TLP4h11g11 �15
+TLP4h21g21 �251 if g > 10

(29)

Initially, we have h= n, g = n, and � = 2n. Hence, the
overall running time of the decomposition algorithm
is defined by TLP4n1n12n5. Taking into account that
the depth of the recursion is O4logn5, we deduce from
the recursive equation that

TLP4n1n12n5=O4n logn50

Theorem 5. Problem 1 � r4j51 p4j5= p̄4j5−x4j51 pmtn1
C4j5 ≤ d4j5 �

∑

w4j5x4j5 can be solved by the decomposi-
tion algorithm in O4n logn5 time.

Notice that the running time of O4n logn5 is the best
possible and matches the time required for solving
the feasibility problem 1 � r4j51 pmtn1C4j5≤ d4j5 � �.

6. Conclusions
It is known that for scheduling problems on paral-
lel machines with controllable processing times, the
running time of an algorithm that minimizes the total
compression cost matches the running time needed
for checking the existence of a feasible schedule with
fixed processing times: O4n35 for identical parallel
machines, and O4mn35 for uniform parallel machines.
In this paper, we give an O4n logn5-time algorithm
for solving a single-machine scheduling problem with
controllable processing times to minimize the total
compression cost, thereby removing the complexity
gap between the earlier known running times for this
problem and its feasibility counterpart with fixed pro-
cessing times. Moreover, this running time cannot be
further reduced.
To achieve the best possible running time for the

single machine model with controllable processing
times, we use a submodular optimization approach,

whose power has been demonstrated in our earlier
work. Here, we develop a decomposition algorithm
for solving an LP problem over a submodular poly-
hedron intersected with a box. This algorithm con-
tributes to a toolkit of submodular optimization
techniques and can be applied to problems from
other areas that allow an appropriate submodular
reformulation.
An important feature of the algorithm described

in this paper is that the search for an instrumental
set that is required for performing a decomposition
step relies on solving an auxiliary problem; see §§4.3
and 5. In our recent paper Shioura et al. (2015) we use
the decomposition algorithm to develop improved
solution methods for three more scheduling prob-
lems with controllable processing times; however, in
that paper we use different principles for finding an
instrumental set.

Acknowledgments
This research was supported by the EPSRC funded project
[EP/J019755/1] “Submodular Optimisation Techniques for
Scheduling with Controllable Parameters.” The first author
is partially supported by the Humboldt Research Fellow-
ship of the Alexander von Humboldt Foundation and by
JSPS/MEXT KAKENHI [Grants 21740060, 24500002].

References

Ahuja RK, Orlin JB, Stein C, Tarjan RE (1994) Improved algorithms
for bipartite network flow. SIAM J. Comput. 23:906–933.

Bansal N, Pruhs K, Stein C (2009) Speed scaling for weighted flow
time. SIAM J. Comput. 39:1294–1308.

Bunde DP (2009) Power-aware scheduling for makespan and flow.
J. Sched. 12:489–500.

Chung JY, Shih W-K, Liu JWS, Gillies DW (1989) Scheduling impre-
cise computations to minimize total error. Microproc. Micropro-
gram. 27:767–774.

Federgruen A, Groenevelt H (1986) Preemptive scheduling of uni-
form machines by ordinary network flow techniques. Manage-
ment Sci. 32:341–349.

Fujishige S (2005) Submodular Functions and Optimization, 2nd ed.,
Annals of Discrete Mathematics, Vol. 58 (Elsevier, Amsterdam).

Gallo G, Grigoriadis MD, Tarjan RE (1989) A fast parametric max-
imum flow algorithm and applications. SIAM J. Comput. 18:
30–55.

Gordon VS, Tanaev VS (1973) Deadlines in single-stage determin-
istic scheduling. Optim. Systems Collecting, Transfer Processing
Analogous Discrete Data Local Information Comput. Systems. Mate-
rials 1st Joint Soviet-Bulgarian Seminar (Institute of Engineer-
ing Cybernetics of Bulgarian Academy of Sciences/Institute of
Engineering Cybernetics of Belarussian Academy of Sciences,
Minsk), 53–58. (in Russian).

Hochbaum DS, Shamir R (1990) Minimizing the number of tardy
job unit under release time constraints. Discr. Appl. Math. 28:
45–57.

Horn W (1974) Some simple scheduling algorithms. Naval Res.
Logist. Quart. 21:177–185.

Iwata S, Fleischer L, Fujishige S (2001) A combinatorial, strongly
polynomial-time algorithm for minimizing submodular func-
tions. J. ACM 48:761–777.

Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (1993)
Sequencing and scheduling: Algorithms and complexity.
Graves CS, Rinnooy Kan AHG, Zipkin PH, eds. Handbooks in
Operations Research and Management Science, Vol. 4, Logistics
of Production and Inventory (North–Holland, Amsterdam),
445–522.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
3.

60
.7

7.
86

] 
on

 2
2 

Fe
br

ua
ry

 2
01

6,
 a

t 0
7:

29
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Shioura, Shakhlevich, and Strusevich: Applying Submodular Optimization to Single Machine Scheduling
INFORMS Journal on Computing 28(1), pp. 148–161, © 2016 INFORMS 161

Leung JY-T (2004) Minimizing total weighted error for impre-
cise computation tasks. Leung JY-T, ed. Handbook of Schedul-
ing: Algorithms, Models and Performance Analysis (Chapman &
Hall/CRC, Boca Raton, FL), 34-1–34-16.

Leung JY-T, Yu VKM, Wei W-D (1994) Minimizing the weighted
number of tardy task units. Discr. Appl. Math. 51:307–316.

McCormick ST (1999) Fast algorithms for parametric scheduling
come from extensions to parametric maximum flow. Oper. Res.
47:744–756.

Nowicki E, Zdrzałka S (1990) A survey of results for sequencing
problems with controllable processing times. Discr. Appl. Math.
26:271–287.

Schrijver A (2000) A combinatorial algorithm minimizing submod-
ular functions in strongly polynomial time. J. Combin. Theory
Ser. B 80:346–355.

Schrijver A (2003) Combinatorial Optimization: Polyhedra and Effi-
ciency (Springer, Berlin).

Shabtay D, Steiner G (2007) A survey of scheduling with control-
lable processing times. Discr. Appl. Math. 155:1643–1666.

Shakhlevich NV, Strusevich VA (2005) Pre-emptive scheduling
problems with controllable processing times. J. Sched. 8:
233–253.

Shakhlevich NV, Strusevich VA (2008) Preemptive scheduling on
uniform parallel machines with controllable job processing
times. Algorithmica 51:451–473.

Shakhlevich NV, Shioura A, Strusevich VA (2008) Fast divide-and-
conquer algorithms for preemptive scheduling problems with

controllable processing times—A polymatroidal approach.
Halperin D, Mehlhorn K, eds. Euro. Symposium Algorithms
2008, Lecture Notes in Computer Science, Vol. 5193 (Springer,
Berlin), 756–767.

Shakhlevich NV, Shioura A, Strusevich VA (2009) Single machine
scheduling with controllable processing times by submodular
optimization. Internat. J. Found. Comput. Sci. 20:247–269.

Shih W-K, Lee C-R, Tang CH (2000) A fast algorithm for schedul-
ing imprecise computations with timing constraints to mini-
mize weighted error. Proc. 21st IEEE Real-Time Systems Sympos.
4RTSS20005, Orlando, FL, 305–310.

Shih W-K, Liu JWS, Chung J-Y (1991) Algorithms for scheduling
imprecise computations with timing constraints. SIAM J. Com-
put. 20:537–552.

Shih W-K, Liu JWS, Chung J-Y, Gillies DW (1989) Scheduling tasks
with ready times and deadlines to minimize average error.
ACM SIGOPS Oper. Syst. Rev. 23:14–28.

Shioura A, Shakhlevich NV, Strusevich VA (2013) A submodular
optimization approach to bicriteria scheduling problems with
controllable processing times on parallel machines. SIAM J.
Discr. Math. 27:186–204.

Shioura A, Shakhlevich NV, Strusevich VA (2015) Decomposi-
tion algorithms for submodular optimization with applications
to parallel machine scheduling with controllable processing
times. Math. Program., Ser. A. 153:495–534.

This work is licensed under a Creative Commons Attribution 4.0 United States
License. You are free to copy, distribute, transmit and adapt this work, but you must
attribute this work as “INFORMS Journal on Computing. Copyright 2016 INFORMS.
http://dx.doi.org/10.1287/ijoc.2015.0660, used under a Creative Commons
Attribution License: http://creativecommons.org/licenses/by/4.0/us/”

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
3.

60
.7

7.
86

] 
on

 2
2 

Fe
br

ua
ry

 2
01

6,
 a

t 0
7:

29
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://dx.doi.org/10.1287/ijoc.2015.0660
http://creativecommons.org/licenses/by/4.0/us/

