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Abstract. In this paper, we propose a new methodology for the speed-scaling problem
based on its link to scheduling with controllable processing times and submodular opti-
mization. It results in faster algorithms for traditional speed-scaling models, characterized
by a common speed/energy function. Additionally, it efficiently handles the most general
models with job-dependent speed/energy functions with single and multiple machines.
To the best of our knowledge, this has not been addressed prior to this study. In partic-
ular, the general version of the single-machine case is solvable by the new technique in
O(n2) time.
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1. Introduction
Scheduling models with variable machine speeds have
been studied since the 1980s; see, e.g., Ishii et al. (1985).
They were reintroduced in the 1990s in the context of
energy efficiency of battery operated portable comput-
ing devices; see Yao et al. (1995). In those models, pro-
cessors can work at different voltage/frequency levels,
achieving a lower level of energy consumption at the
cost of performing computation at a slower rate. The
introduction of multiprocessor computer systems with
processors having changeable speeds has led to further
developments in processors’ power management. The
topic has become particularly important in recent years
with increased importance of energy saving demands.
Informally, in speed-scaling problems it is required

to determine the processing speed of each job either on
a single machine or on parallel machines. The speeds
are selected in such a way that (i) the cost of speed
changing, often understood as energy needed to main-
tain a certain speed, is minimized, and (ii) the actual
processing time of each job allows its processingwithin
a given time window.

It is widely recognized that the paper by Yao et al.
(1995) provides a fundamental algorithmic technique

widely known as YDS algorithm, for speed scaling
for the most basic model with a single processor. For
almost 20 years the O(n3)-time YDS algorithm has
remained the main item of reference in the area. See
Online Supplement 1 for a description of that algo-
rithm and discussions, including its faster implemen-
tations. Notice that the same model and a very similar
algorithm were also presented in an earlier paper by
Vizing et al. (1981).

The multiprocessor version of the problem received
attention quite recently, see Albers et al. (2007, 2015),
Angel et al. (2012). The fastest strongly polynomial-
time algorithm proposed in Albers et al. (2015) solves
repeatedly a series of the maximum flow problems and
requires O(n2h(n)) time, where h(n) is the time com-
plexity for computing the maximum flow in a layered
graph with O(n) nodes, which leads to an O(n4 log n)-
time algorithm. The link to themaximumflowproblem
is also exploited in Angel et al. (2012), although the
running time of the resulting algorithm is not strongly
polynomial.

In our study, we provide a new insight into the un-
derlying model of the speed scaling problem (SSP)
by establishing its link to optimization of a convex
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function over submodular constraints, which results
into a new methodological framework for handling
the problem. Applying powerful tools of submodu-
lar optimization we achieve faster algorithms for the
single- and multiprocessors cases, with time complex-
ities O(n2) and O(n3), respectively.

The proposed methodology makes it possible to ad-
dress a more general version of the SSP in comparison
to those previously studied. Although it is traditionally
assumed that the energy consumption functions are
identical for all jobs, in reality heterogeneous jobs may
differ in their energy characteristics (e.g., as a result of
their different read/write characteristics, the sizes of
input/output files, the usage of internal and external
memory, etc.). We demonstrate that the more general
SSPwith job-dependent energy consumption functions
can be solved by the submodular optimization tech-
niques in O(n2) and O(n4) time for the single- andmul-
timachine cases, respectively. To the best of our knowl-
edge, these are the first results for this general type of
the speed scaling model, and the running times com-
pare favorably to those earlier available for solving the
SSP with job-independent cost functions.
The need to consider individual energy models for

tasks dependent on their computation intensity or
data intensity is widely recognized in the computing
community, and more realistic features of the effect
of speed scaling have been included in the mod-
els. Increasing processor’s speed can speed up the
computation part of the job, keeping the overheads
of read/write operations unchanged. Therefore, the
energy consumption function depends on job charac-
teristics related to the job splitting into a computation
part and an input/output part; see, e.g., Venkatacha-
lam and Franz (2005) for an overview of the models of
this type discussed in the context of memory bounded
applications, Bambagini et al. (2013a, b) for an exam-
ple of a job-dependent energy function, and Wu et al.
(2012) for an example of mathematical analysis of the
relevant model.

Our study of the problems with heterogeneous jobs
complements another stream of research with heteroge-
neous machines. While in the models we consider the
energy consumption functions are job-dependent and
they can be different for different jobs even if the jobs
are assigned to the same machine, in the models with
heterogeneous machines the energy consumption func-
tions are machine dependent. This means that the same
job, when assigned to different machines, incurs dif-
ferent costs even if it is processed at the same speed.
These type of problems are studied by Gupta et al.
(2010, 2012), Bampis et al. (2016), Albers et al. (2016).
We now formally define the SSP with heterogeneous

jobs. There is given a set of jobs N � {1, 2, . . . , n} that
have to be processed either on a single machine M1
or on parallel machines M1 ,M2 , . . . ,Mm , where m ≥ 2.

Each job j ∈N is given a release date r( j), before which it
is not available, a deadline d( j), by which its processing
must be completed, and its processing volume or size
w( j). The value of w( j) can be understood as the actual
processing time of job j, provided that the speed s( j)
of its processing is set equal to 1. In the processing of
any job, preemption is allowed, so that the processing
can be interrupted on any machine at any time and
resumed later, possibly on anothermachine (in the case
of parallel machines). It is not allowed to process a job
on more than one machine at a time, and a machine
processes at most one job at a time.

The actual processing time p( j) of a job j ∈ N de-
pends on the speed of the processor that may change
over time. In the SSP literature, the power consump-
tion of a machine operating at speed s is proportional
to s3, or in general is described by a convex nondecreas-
ing function f (s). Given a schedule with a specified
allocation of jobs to machines and fixed time intervals
for processing jobs or their parts, the energy is calcu-
lated as power integrated over time. As a result of the
convexity of f , the energy can be minimized by pro-
cessing each job j with a fixed speed s( j), which does
not change during the whole processing of a job; see,
e.g., Albers et al. (2015). This property also holds if
energy consumption functions are different for differ-
ent jobs. Thus, the actual processing time of job j is
equal to p( j) � w( j)/s( j) and the total cost of process-
ing job j is equal to (w( j)/s( j)) f j(s( j)), where f j(s( j)) is
the cost of keeping the processing speed of job j to be
equal to s( j) for one time unit; each function is convex
nondecreasing.

In the SSP, the goal is to find an assignment of speeds
to jobs such that

(i) the energy consumption is minimized, and
(ii) a feasible schedule (with no job j processed out-

side the time interval [r( j), d( j)]) exists.
The corresponding cost function is defined as

F �

n∑
j�1

w( j)
s( j) f j(s( j)). (1)

Notice that the prior research on the SSP focuses on
minimizing a simpler function

Φ�

n∑
j�1

w( j)
s( j) f (s( j)), (2)

in which the speed cost function f is a convex function,
common to all jobs.

In a broad sense, the SSP belongs to the area of
scheduling models in which a decision maker is able
to control processing parameters. One type of such
models, known as scheduling models with controllable
processing times appears to be especially relevant to
the SSP. Scheduling problems of the latter type have
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been actively studied since the 1980s; see the surveys
by Nowicki and Zdrzałka (1990), Shabtay and Steiner
(2007). To demonstrate the link between the problems
with controllable processing times and the SSP, we give
a description of the former model for a machine envi-
ronment similar to that of SSP.
In the model with controllable processing times

(CPT), the jobs of set N � {1, 2, . . . , n} have to be pro-
cessed with preemption either on a single machine M1
or on parallel machines M1 ,M2 , . . . ,Mm , where m ≥ 2.
Each job j has a release date r( j) and a deadline d( j).
A decision needs to be made about the actual dura-
tion p( j) of a job: it should belong to a given inter-
val [l( j), u( j)]. Such a decision results in compression of
the longest processing time u( j) down to p( j), and the
value z( j) � u( j) − p( j) is called the compression amount
of job j. Compression may decrease the completion
time of each job j but incurs additional cost. The pur-
pose is to find the actual processing times such that a
feasible schedule exists and the total compression cost∑

j∈N α( j)z( j) is minimized, where α( j) is the cost of
compressing job j by one time unit.
The SSP and scheduling problems with CPT are

similar; however, they are based on principally dif-
ferent types of control of the actual processing times,
and involve different objective functions. Still, there
are several aspects that make the formulated prob-
lems with CPT relevant to the SSP. As we demonstrate
in this paper, efficient CPT algorithms can be used
as subroutines for solving more complex SSP prob-
lems (see Section 5, which makes use of an algorithm
from Hochbaum and Shamir 1990 for solving a single
machine problemwith controllable processing times to
minimize the total compression time ∑

j∈N z( j)). Most
importantly, unlike the previous purpose-built tech-
niques with a schedule-based reasoning, in our study
we consider both types of models, SSP and CPT, as
optimization problems with submodular constraints.
This “step change” research allows us to develop a
common toolkit for solving scheduling problems of
a similar nature. The success of this new methodol-
ogy for the CPT models has been demonstrated in
a series of papers (Shakhlevich and Strusevich 2005,
2008; Shakhlevich et al. 2009; Shioura et al. 2013, 2015,
2016). As a result, powerful methods of submodular
optimization have been used to develop and justify
the fastest available algorithms for both single criterion
and bicriteria problems with CPT. What we see as a
methodological contribution of this paper is the devel-
opment of a general framework for handling the SSP.
We establish links between the SSP on one hand, and
the flow problems and submodular optimization prob-
lems with nonlinear objective functions. This allows
us to come up with the faster available methods not
by designing purpose-built algorithms, but rather by

adapting the existing flow and submodular optimiza-
tion techniques.

In this paper, we reformulate the SSP as the problem
of minimizing function F of the form (1) on parallel
machines as a minimum-cost maximum-flow problem
with a nonlinear convex separable objective function;
see Section 2. The latter problem is then linked to a
nonlinear convex minimization problem under sub-
modular constraints, which can be solved by adapting
a decomposition algorithm of Fujishige (1980); see Sec-
tion 3. In Sections 4 and 5, we show how to imple-
ment the decomposition algorithm in such a way that
the original SSP is solvable in O(n4) time on parallel
machines and in O(n2) time on a single machine. In
the multimachine case with the objective function Φ of
the form (2) we rely on a nontrivial result in Murota
(1988) and Nagano and Aihara (2012) to reduce the
problem to the minimization problemwith a separable
quadratic objective, which allows the SSP to be solved
in O(n3) time.

2. Reduction of Speed Scaling Problems
to Minimum-Cost Flow Problems

Given a set N � {1, 2, . . . , n} of jobs to be processed on
either a single machine M1 or on m parallel machines
M1 ,M2 , . . . ,Mm , where m ≥ 2, consider the speed scal-
ing problem (SSP, for short). For each job j ∈ N , we are
given

• w( j), volume of computation of job j, i.e., its pro-
cessing time at speed equal to 1;

• r( j), the release date;
• d( j), the deadline;
• f j(s( j)), the cost of keeping the processing speed

of job j to be equal to s( j) for one time unit.
It is required tominimize a function F of the form (1).

We can rewrite the problemwith the decision variables
p( j) � w( j)/s( j), where p( j) is understood as an actual
processing time of job j ∈ N . Then, the objective func-
tion F becomes

F̂ �

n∑
j�1

p( j) f j

(
w( j)
p( j)

)
. (3)

This function has to be minimized over all feasible
values of p( j). We reformulate the resulting problem as
a minimum-cost maximum-flow problem in a bipartite
network with a nonlinear convex objective.

Divide the interval [min j∈N r( j),max j∈N d( j)] into
subintervals by using the release dates r( j) and the
deadlines d( j) for j ∈ N as break-points. Let τ0 , τ1 ,
. . . , τγ, where 1≤ γ ≤ 2n−1, be the increasing sequence
of distinct numbers in the list (r( j), d( j) | j ∈ N). Intro-
duce the intervals Ih � [τh−1 , τh], 1 ≤ h ≤ γ, and define
the set of all intervals W � {Ih | 1 ≤ h ≤ γ}. Denote the
length of interval Ih by ∆h � τh − τh−1. Interval Ih is
available for processing job j if r( j) ≤ τh and d( j) ≥ τh+1.
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For a job j, denote the set of the available intervals
by Γ( j), i.e.,

Γ( j)�
{
Ih ∈W | Ih ⊆ [r( j), d( j)]

}
. (4)

For X ⊆ N , define the set of all intervals available for
processing the jobs of set X as

Γ(X)�
⋃
j∈X
Γ( j). (5)

Introduce the following bipartite network G∞ �

(V,A) (see Figure 1 for an illustration). The node set is
given by V � {s , t}∪N∪W , where s is the source node,
t is the sink node, N is the set of job nodes, and W is
the set of interval nodes, i.e., W � {I1 , I2 , . . . , Iγ}. The
arc set A is given as A � As ∪A0 ∪At , where

As
�

{
(s , j) | j ∈ N

}
,

A0
�

{
( j, Ih) | j ∈ N, Ih ∈ Γ( j)

}
,

At
�

{
(Ih , t) | h � 1, 2, . . . , γ

}
,

so that the source node s is connected to each job node,
each interval node is connected to the sink node t,
and each job node is connected to the nodes associated
with the available intervals. We define the arc capacity
µ: A→�+ as follows:

µ(s , j)�+∞, (s , j) ∈ As ,

µ( j, Ih)�∆h , ( j, Ih) ∈ A0 ,

µ(Ih , t)� m∆h , (Ih , t) ∈ At .

The problem of verifying whether there exists a fea-
sible schedule with fixed processing times p( j), j ∈ N ,
can be translated in terms of the network flowproblem.

Lemma 1 (cf. Gordon and Tanaev 1973, Horn 1974). Let
p � (p(1), . . . , p(n)) be an n-dimensional vector with posi-
tive components. A feasible schedule for processing the jobs
of set N on m identical parallel machines (or on a single
machine if m � 1) such that job j ∈N has the actual process-
ing time of p( j) exists if and only if there exists a feasible s-t
flow x: A→ �+ in network G∞ with x(s , j) � p( j) for all
j ∈ N .

For a network with a set of nodes V , an algorithm
developed by Karzanov (1974) finds a maximum flow
in O(|V |3) time. Since |N | � n and |W | ≤ 2n, Karzanov’s
algorithm checks the existence of a feasible schedule
on m parallel machines in O(n3) time.
A feasible flow x( j, Ih) on arc ( j, Ih) defines for how

long job j is processed in the time interval Ih . On a
single machine, a feasible flow easily translates into a
feasible schedule and vice versa, since there is a one-
to-one correspondence between the flow incoming into
an interval node Ih and durations of jobs processed
within the corresponding time intervals by a single
machine. In the case of m identical parallel machines,

the link between a feasible flow and a feasible sched-
ule is less evident. To know the flow values x( j, Ih)
is insufficient to define a schedule. We need a linear
time algorithm by McNaughton (1959) to find a feasi-
ble preemptive schedule for each interval Ih , and then
the overall schedule can be found as a concatenation of
these schedules.

In the SSP to minimize function F̂ of the form (3),
the actual processing times p( j) are not given but are
in fact decision variables. Let x(s , j) denote the amount
of flow on an arc (s , j), j ∈N . Define the associated cost
function c(s , j) of that flow as

c(s , j)(x(s , j))� x(s , j) f j

(
w( j)

x(s , j)

)
,

which is a convex function with respect to x(s , j).
The cost of flow on each remaining arc is set to
zero. Then the SSP reduces to finding a maximum
flow x∗ in network G∞ that minimizes the total cost∑

j∈N c(s , j)(x∗(s , j)). Given a minimum-cost maximum-
flow x∗, the optimal processing times of the SSP are
given by p( j) � x∗(s , j), j ∈ N , and optimal speeds are
s( j)� w( j)/p( j). Note that the proposed model implies
that s( j) can take any values, so that for s( j) > 1 pro-
cessing is sped up, while for s( j) < 1 it is slowed down
in comparison with a standard speed of 1.

The derived minimum-cost maximum-flow problem
has a separable convex objective function. A similar
formulation can be found in several papers on the SSP;
see, e.g., Bampis et al. (2015) for the most recent ref-
erence. However, unlike most of prior research, we
explore a link between network flow problems and
submodular optimization. These issues are discussed
Section 3.

3. Links to Submodular Optimization
We briefly describe the necessary concepts related to
submodular optimization and establish its links to
the network flow problems and scheduling problems
of interest. Unless stated otherwise, we follow the
comprehensive monographs by Fujishige (2005) and
Schrĳver (2003).

A set function ϕ: 2N → � is called submodular if the
inequality

ϕ(X ∪Y)+ϕ(X ∩Y) ≤ ϕ(X)+ϕ(Y) (6)

holds for all sets X,Y ∈ 2N , and called monotone if
ϕ(X) ≤ ϕ(Y) for every X,Y ∈ 2N with X ⊆ Y. For a
monotone submodular function ϕ defined on 2N such
that ϕ(�)� 0, the pair (N, ϕ) is called a polymatroid and
ϕ the rank function of the polymatroid. For a polyma-
troid (N, ϕ), define two polyhedra

P(+)(ϕ)�
{
p ∈ �N | p(X) ≤ ϕ(X),X ∈ 2N ,p ≥ 0

}
,

B(ϕ)�
{
p ∈ �N | p ∈ P(+)(ϕ), p(N)� ϕ(N)

}
,

(7)
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Figure 1. Network G∞ � (V,A)
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where we denote p(X) � ∑
j∈X p( j) for a vector p ∈

�N and a set X ⊆ N . Polyhedra P(+)(ϕ) and B(ϕ) are
called a polymatroid polyhedron and a base polyhedron,
respectively, associated with the polymatroid. Notice
that B(ϕ) represents the set of all maximal vectors in
P(+)(ϕ).
Consider the bipartite network G∞ described in Sec-

tion 2. We define a polyhedron

P �
{
p ∈ �N

+
| ∃ feasible s-t flow x: A→�+

in G∞ with p( j)� x(s , j), j ∈ N
}
.

It is known that such a polyhedron is a polyma-
troid polyhedron (see, e.g., Megiddo 1974, Lemma 4.1;
Fujishige 2005, Section 2.2; Hochbaum andHong 1995).
Furthermore, all possible maximum flows can be char-
acterized as a base polyhedron B(ϕ) with a polyma-
troid rank function ϕ: 2N→� given by

ϕ(X)�max
{∑

j∈X
y(s , j)

���� y is a feasible s-t flow in G∞

}
,

X ⊆N. (8)

Note that the polymatroid rank function ϕ can also be
represented as

ϕ(X)�max
{∑

j∈N
y(s , j)

���� y is a feasible s-t flow in GX
∞

}
,

X ⊆N, (9)

where GX
∞ is a network that differs from G∞ only by

the capacities of the arcs entering the nodes j ∈ N\X;
in order to exclude those nodes from consideration,
µ(s , j) are set to 0 for them.

We see from (8) and from the definition of the net-
work G∞ that the value ϕ(X) admits an explicit formula
as follows. For X ⊆ N and h � 1, 2, . . . , γ, we denote by
η(X, h) the number of jobs in X that can be processed
in the interval Ih , i.e.,

η(X, h)�
��{ j ∈ X | Ih ∈ Γ( j)}

��. (10)

Notice that for X,Y ⊆ N such that X ∩Y ��, we have

η(X ∪Y, h)� η(X, h)+ η(Y, h). (11)

Then, the value ϕ(X) is explicitly given as

ϕ(X)�
γ∑

h�1
min{m , η(X, h)} ·∆h , X ⊆ N. (12)

In scheduling terms, the value in the right-hand side
of (12) specifies the total duration of all time intervals
available for processing the jobs of set X or needed
for processing the jobs of set X, whichever is smaller.
For the case of a single machine, i.e., for m � 1, the
formula (12) can be simplified as

ϕ(X)�
∑

Ih∈Γ(X)
∆h , X ⊆ N, (13)

where Γ(X) is given by (5).
Recall that in Section 2, the SSP is reduced to

the minimum-cost maximum-flow problem in net-
work G∞. Thus, in terms of submodular optimization,
the SSP can be reformulated as

SSP: minimize
n∑

j�1
p( j) f j

(
w( j)
p( j)

)
subject to p ∈ B(ϕ), (14)
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with the polymatroid rank function ϕ defined by (8)
with respect to network G∞. The problem (14) falls into
the category of problems of minimizing convex sepa-
rable functions with a polymatroid constraint:

minimize
n∑

j�1
h j(p( j))

subject to p ∈ B(ϕ), (15)

where h j( · ) is a convex function, and B(ϕ) is a base
polyhedron associated with a polymatroid rank func-
tion ϕ. In particular, for h j(p( j)) � p( j) f j(w( j)/p( j)),
problem (15) coincides with problem (14). Recall that
every p ∈ B(ϕ) is a nonnegative vector since ϕ is a poly-
matroid rank function.
To solve the problem (15), we can adapt a decomposi-

tion algorithm by Groenevelt (1991) (see also Fujishige
2005, Section 8.2). A description of a variant of the
decomposition algorithm that suits our purposes is
given next.

Algorithm F-Decomp
Step 1. Find an optimal solution b ∈�N of the follow-

ing “relaxed” problem with a single constraint:

minimize
∑
j∈N

h j(p( j))

subject to p(N)� ϕ(N),
p( j) ≥ 0, j ∈ N.

Step 2. Find a maximal vector q ∈ �N satisfying the
following condition:

q(X) ≤ ϕ(X), X ∈ 2N , 0 ≤ q( j) ≤ b( j), j ∈ N.

Step 3. Find a nonempty set Y∗ ⊆ N such that

q(Y∗)� ϕ(Y∗); q( j)� b( j), j ∈ N\Y∗. (16)

Step 4. If Y∗ � N , then output the vector q and stop.
Otherwise, go to Step 5.
Step 5. Find an optimal solution p1 ∈ �Y∗ of the fol-

lowing problem:

minimize
∑
j∈Y∗

h j(p( j))

subject to p(X) ≤ ϕ(X), X ∈ 2Y∗ ,

p(Y∗)� ϕ(Y∗).

Step 6. Find an optimal solution p2 ∈�N\Y∗ of the fol-
lowing problem:

minimize
∑

j∈N\Y∗
h j(p( j))

subject to p(X) ≤ ϕ(X ∪Y∗) −ϕ(Y∗), X ∈ 2N\Y∗ ,

p(N\Y∗)� ϕ(N) −ϕ(Y∗).

Step 7. Output the direct sum p∗ � p1 ⊕ p2 ∈ �N and
stop.

The decomposition algorithm admits the following
interpretation in scheduling terms. The value ϕ(X) for
X ⊆ N specifies the total duration of all time intervals
available for processing the jobs of set X. Thus, for the
relaxed problem in Step 1, the found values of b( j),
j ∈ N , can be understood as actual processing times
of jobs such that their total duration p(N) � b(N) is
equal to the total duration ϕ(N) of all available inter-
vals. In the case of job-independent speed cost func-
tions (i.e., the speed cost function becomes Φ of the
form (2)), this is achieved by processing the jobs at the
common speed defined as the total work requirement
of all jobs w(N) divided by the total length ϕ(N) of
available intervals, i.e., each job j is processed at the
same speed s( j)� w(N)/ϕ(N).
For the original SSP, the values of b( j) are not nec-

essarily feasible durations for some jobs. The required
feasible values q( j), j ∈ N , are found in Step 2. The
set Y∗ found in Step 3 identifies a set of jobs with the
total duration equal to the total capacity of all inter-
vals available for processing these jobs. In other words,
for each job j ∈ Y∗ its actual duration cannot be further
extended because of the insufficient processing capac-
ity, while for each of the remaining jobs in N\Y∗ its
actual duration can be further extended.

Notice that the subproblems to be solved in Steps 5
and 6 share a common structure. Using two sets
H,K ⊆ N such that H ∩K ��, each subproblem can be
written in the following form:

minimize
∑
j∈H

h j(p( j))

subject to p(X) ≤ ψK(X), X ∈ 2H ,

p(H)� ψK(H), (17)

where ψK : 2H → � is a submodular function with
ψK(�)� 0 given by

ψK(X)� ϕ(X ∪K) −ϕ(K), X ∈ 2H . (18)

Hence, the original problem can be solved recursively.
It should be noted that the function ψK is dependent

on the set K, i.e., for X ⊆H, the value ψK(X) is different
for different K in general. In the following, we omit the
subscript K of ψK since it is clear from the context.
We now present the explicit representation of the

function ψ � ψK for problem (17). Substituting the
expression (12) of ϕ into (18) we obtain

ψ(X)�ϕ(X ∪K) −ϕ(K)

�

γ∑
h�1
(min{m , η(X ∪K, h)} −min{m , η(K, h)})∆h .
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For h � 1, 2, . . . , γ, if Ih <Γ(X) thenwe have η(X∪K, h)�
η(K, h) and

min{m , η(X ∪K, h)} �min{m , η(K, h)}. (19)

Also, if Ih ∈ Γ(X) but η(K, h) ≥ m, then again (19) holds.
In either case, the corresponding term does not con-
tribute to ψ(X).
Thus, we only need to consider intervals of the set

W(X,K)� {Ih | Ih ∈ Γ(X), η(K, h) < m}, (20)

namely those intervals Ih , which are suitable for pro-
cessing the jobs from X (i.e., Ih ∈ Γ(X)) and are not fully
used by the jobs from K (i.e., η(K, h) < m). For an inter-
val Ih ∈W(X,K)we have

min{m , η(X ∪K, h)} −min{m , η(K, h)}
�min{m , η(X ∪K, h)} − η(K, h)
�min{m − η(K, h), η(X, h)},

where the last equality is a result of (11). Thus, we have

ψ(X)�
∑

Ih∈W(X,K)
min{m − η(K, h), η(X, h)}∆h . (21)

In particular, if m � 1 then W(X,K)� Γ(X)\Γ(K) and

ψ(X)�
∑

Ih∈Γ(X)\Γ(K)
∆h �

∑
Ih∈Γ(X∪K)\Γ(K)

∆h . (22)

Remark 1. Conditions (16) used in Step 3 consist of a
so-called tightness condition q(Y∗)� ϕ(Y∗) for the set Y∗
and the requirement that q( j) � b( j) for j ∈ N\Y∗. In
the version of the algorithm presented by Fujishige
(2005), the author recommends that Y∗ is a maximal
(and, therefore, unique) tight set with respect to the
vector q found in Step 2, but themaximality of the tight
set is stated as not crucial.
Our version of the decomposition algorithm uses

any tight set Y∗ (not necessarily amaximal one), if it sat-
isfies the second condition in (16). Such a set is called
instrumental set in Shioura et al. (2015). We describe
how to find an instrumental set Y∗ for our two schedul-
ing applications in Sections 4 and 5.
Notice that the maximal tight set Y∗ recommended

by Fujishige (2005) satisfies both conditions in (16) and
therefore it is an instrumental set as well.

Remark 2. Step 1 involves minimization of a non-
linear function. To estimate the running time of Algo-
rithm F-Decomp we need an assumption on a possible
implementation of that step. It is easy to verify that
vector b ∈ �N found in Step 1, is such that

dh j(b( j))
dp( j) � λ, j ∈ N,

for some λ. We assume that Step 1 can be imple-
mented in O(n) time. This is, for example, true if

the power consumption function for job j is of the
form f j(s( j))� a( j)s( j)c , where c > 1 is a constant and
a( j) is a job-dependent coefficient that differentiates
computation- and data-intensive jobs. In this case

h j(p( j))�
a( j)w( j)c

p( j)c−1 , j ∈ N

and the solution to Step 1 is given by

b( j)�
a( j)1/c w( j)ϕ(N)∑

j∈N a( j)1/c w( j) , j ∈ N.

This generalizes the most common case studied in
the speed scaling literature with a job-independent
power consumption function of the form f j(s( j)) �
s( j)c , where c > 1 is a constant. Notice that the case of
c � 3 corresponds to the well-known cubic root rule for
CMOS devices: the speed is approximately equal to the
cubic root of the power, or equivalently f j(s( j))� s( j)3.

In Sections 4 and 5, we explain implementation
details of the steps of Algorithm F-Decomp in the case
of the speed scaling problems on identical parallel
machines and on a single machine, respectively. In fact,
we only need to focus on Steps 2 and 3 that arise when
solving the subproblem (17). Step 2 can be interpreted
as finding an optimal solution q∗ to the following aux-
iliary linear programming problem:

(LP): maximize
∑
j∈H

q( j)

subject to q(X) ≤ ψ(X), X ∈ 2H ,

0 ≤ q( j) ≤ b( j), j ∈ H, (23)

while Step 3 requires finding a set Y∗ satisfying q(Y∗)�
ϕ(Y∗) and q( j)� b( j), j ∈ N\Y∗.
Note that the number of subproblems generated by

Algorithm F-Decomp is at most 2n − 1 and therefore
Steps 2 and 3 are performed O(n) times. Hence, under
the assumption made in Remark 2 regarding the time
complexity of Step 1, the overall running time of Algo-
rithm F-Decomp is O(n · T23(n)), where T23(h) denotes
the time required for Steps 2 and 3 with h decision
variables.

4. Solving SSP on Parallel Machines
We start with the case of parallel machines. Consider
problem (17), where function ψ: 2H → � is given by
(18) and the speed cost functions f j are job dependent.
We show that for solving (17), Steps 2 and 3 of Algo-
rithm F-Decomp can be implemented in O(n3) time.

Recall that for a set X of jobs, a meaningful interpre-
tation of ψ(X) is the total length of the time intervals
available for processing the jobs of set X ∪ K after the
intervals for processing the jobs of set K have been
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completely used up. Hence, the function ψ can be rep-
resented by a modified version of the network G∞ in a
way similar to (8) for function ϕ.
Let G̃∞(H,K) � (Ṽ , Ã) be a subgraph of G∞ induced

by the set of nodes Ṽ � {s , t} ∪ H ∪ W̃ , where W̃ �

W(H,K) is defined in accordance with (20). Thus, net-
work G̃∞(H,K) contains the job nodes associated with
the jobs of set H and the interval nodes associated with
intervals of set W̃ � W(H,K), which are suitable for
processing the jobs from H and are not fully used by
the jobs of set K. The set of arcs of G̃∞(H,K) is given as

Ã � {(s , j) | j ∈ H} ∪ {( j, Ih) | j ∈ H, Ih ∈ Γ( j) ∩ W̃}
∪ {(Ih , t) | Ih ∈ W̃},

and the arc capacities are as follows:

µ̃(s , j)�+∞, (s , j) ∈ Ã,

µ̃( j, Ih)�∆h , ( j, Ih) ∈ Ã,

µ̃(Ih , t)�min{m − η(K, h), η(H, h)}∆h , (Ih , t) ∈ Ã.

Note that µ̃(Ih , t) are defined in accordance with (21).
Lemma 2 shows that for any X ⊆ H the correspond-

ing value of ψ(X) is defined as a maximum flow value
in G̃∞(H,K).
Lemma 2. Given sets H,K ⊆ N such that H ∩ K � �, the
equality

ψ(X)�max
{∑

j∈X
y(s , j)

����
y is a feasible s-t flow in G̃∞(H,K)

}
(24)

holds for each X ⊆ H.

Proof. Introduce network G̃X
∞, which differs from

G̃∞(H,K) only by the zero capacities set on the arcs
entering the nodes j ∈H\X. Formally, the arc capacities
of G̃X

∞ are denoted by µ̃X(u , v) and defined by

µ̃X(u , v)�
{

0, if (u , v)� (s , j)with j ∈ H\X;
µ̃(u , v), otherwise.

Clearly, the maximum flow value

max
{∑

j∈H
y(s , j)

���� y is a feasible s-t flow in G̃X
∞

}
is equal to the right-hand side of (24).
Let ζ be the value of the right-hand side of (21). To

prove the lemma it suffices to demonstrate that the
value of a maximum flow in G̃X

∞ is equal to ζ.
We first explain how to construct a feasible s-t flow

in G̃X
∞ with a value equal to ζ. Then we show that the

capacity of an s-t cut in G̃X
∞ is also ζ. Thus, by the

maximum-flow minimum-cut theorem (or the weak

duality theorem of LP), the constructed flow is a maxi-
mum flow, and it is of the required value ζ.
Split the interval nodes W̃ into two subsets, W̃big

and W̃small. Set W̃big consists of intervals Ih that can
accommodate all η(X, h) jobs that can be processed
in Ih . On the other hand, W̃small consists of all inter-
vals Ih that do not have enough room for processing all
η(X, h) jobs. Formally,

W̃big � {Ih ∈ W̃ | η(X, h)∆h ≤ µ̃X(Ih , t)},
W̃small � {Ih ∈ W̃ | η(X, h)∆h > µ̃

X(Ih , t)}.

It is easy to construct a feasible s-t flow x in G̃X
∞ such

that

x(s , j)� x( j, Ih)� 0, if j ∈ H\X,
x( j, Ih)� µ̃X( j, Ih)�∆h , if j ∈ X and Ih ∈ Γ( j) ∩ W̃big ,

x(Ih , t)�
{
η(X, h)∆h , if Ih ∈ W̃big;
µ̃X(Ih , t), if Ih ∈ W̃small.

The flow on the remaining arcs is defined to satisfy
the conservation law. The value of this flow is equal to∑

Ih∈W̃

x(Ih , t)�
∑

Ih∈W̃big

x(Ih , t)+
∑

Ih∈W̃small

x(Ih , t)

�
∑

Ih∈W̃big

η(X, h)∆h +
∑

Ih∈W̃small

µ̃X(Ih , t).

For Ih ∈ W̃big characterized by η(X, h)∆h ≤ µ̃X(Ih , t) �
min{m − η(K, h), η(H, h)}∆h ≤ (m − η(K, h))∆h , we have

x(Ih , t)� η(X, h)∆h �min{m − η(K, h), η(X, h)}∆h .

For Ih ∈ W̃small characterized by µ̃X(Ih , t)< η(X, h)∆h ≤
η(H, h)∆h , we have

x(Ih , t)� µ̃X(Ih , t)�min{m − η(K, h), η(X, h)}∆h .

Thus, we deduce∑
Ih∈W̃

x(Ih , t)�
∑
Ih∈W̃

min{m − η(K, h), η(X, h)}∆h � ζ.

Consider an s-t cut (S,T) given by

S � {s} ∪X ∪ W̃small , T � Ṽ\S � {t} ∪ (H\X) ∪ W̃big ,

and compute its capacity

µ̃X(S,T)�
∑

j∈H\X
µ̃X(s , j)+

∑
j∈X, Ih∈Γ( j)∩W̃big

µ̃X( j, Ih)

+
∑

Ih∈W̃small

µ̃X(Ih , t)

� 0+
∑

Ih∈W̃big

η(X, h)∆h +
∑

Ih∈W̃small

µ̃X(Ih , t)

�
∑
Ih∈W̃

x(Ih , t). �
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By Lemma 2, the problem (LP) in (23) to be solved in
Step 2 can be reduced to themaximumflow problem in
network G̃b , which is obtained from network G̃∞(H,K)
by replacing capacities µ̃(u , v)with µ̃b(u , v) given by

µ̃b(u , v)�
{

b( j), if (u , v)� (s , j), j ∈ H;
µ̃(u , v), otherwise.

For a maximum flow x∗ in network G̃b , an optimal
solution q ∈ �H to the problem (LP) is given by q( j) �
x∗(s , j), j ∈ H.
Now, in Step 3, we need to find an instrumental

set Y∗, i.e., a set Y∗ satisfying (16). Lemma 3 shows that
such a set can be obtained from a minimum s-t cut
in G̃b . Thus, the problem to be solved in Step 3 is a
minimum cut problem in G̃b .

Lemma 3. Let x∗ and (S∗ ,T∗) be a maximum flow and a
minimum s-t cut, respectively, in network G̃b . For vector
q ∈ �H defined as q( j)� x∗(s , j), j ∈ H, the equalities

q(S∗ ∩H)� ψ(S∗ ∩H), q( j)� b( j), j ∈ H\S∗ (25)

hold.

Proof. Since x∗ is amaximumflow and (S∗ ,T∗) is amin-
imum s-t cut, the maximum-flow minimum-cut theo-
rem implies that∑

j∈H
x∗(s , j)� µ̃b(S∗ ,T∗) (26)

and x∗(u , v)� µ̃b(u , v) for every (u , v) ∈ Ã(S∗ ,T∗), where

Ã(S∗ ,T∗)� {(u , v) ∈ Ã | u ∈ S∗ , v ∈ T∗}.

In particular, for each j ∈H\S∗ ⊆ T∗, it holds that (s , j) ∈
Ã(S∗ ,T∗), so that

x∗(s , j)� µ̃b(s , j)� b( j), j ∈ H\S∗ , (27)

and the second equation in (25) holds.
To verify the first equation in (25), we prove∑

j∈X
x∗(s , j)� ψ(X)

with X � H ∩ S∗. Let network G̃X
∞ be as defined in the

proof of Lemma 2. The proof of Lemma 2 shows that

ψ(X)�max
{∑

j∈H
y(s , j)

���� y is a feasible s-t flow in G̃X
∞

}
.

(28)
Let x: Ã→�+ be a feasible s-t flow in G̃X

∞ such that

x(u , v) ≤ x∗(u , v), (u , v) ∈ Ã,

x(s , j)�
{

x∗(s , j), if j ∈ X;
0, otherwise.

Such a flow can be easily obtained from x∗; see, e.g.,
Ahuja et al. (1993). Notice that H\S∗ � H\(S∗ ∩ H) �
H\X, so that (27) implies∑

j∈H\X
x∗(s , j)�

∑
j∈H\X

µ̃b(s , j).

This and (26) yield∑
j∈H

x(s , j)�
∑
j∈H

x∗(s , j) −
∑

j∈H\X
x∗(s , j)

�µ̃b(S∗ ,T∗) −
∑

j∈H\X
µ̃b(s , j)� µ̃X(S∗ ,T∗), (29)

where the last equality is deduced by comparing capac-
ities µ̃b and µ̃X of arcs in the networks G̃b and G̃X

∞:

for (s , j) ∈ Ã(S∗ ,T∗)with j ∈ H\X � H ∩T∗ ,
µ̃b(s , j)� b( j), µ̃X(s , j)� 0,

for other arcs (u , v) ∈ Ã(S∗ ,T∗),
µ̃b(u , v)� µ̃X(u , v).

It follows from (29) and the maximum-flowminimum-
cut theorem (or the weak duality theorem of LP) that x
is a maximum flow in G̃X

∞, which, together with (28),
implies

ψ(X)�
∑
j∈H

x(s , j)�
∑
j∈X

x∗(s , j).

This concludes the proof. �
In summary, Steps 2 and 3 can be reduced to the

maximumflowproblem and to theminimum cut prob-
lem in network G̃b , respectively. Since G̃b has O(n)
nodes, Step 2 requires O(n3) time, as mentioned in
Section 2. Once we obtain a maximum flow, a mini-
mum s-t cut in G̃b can be found in O(|Ã|)� O(n2) time;
see, e.g., Ahuja et al. (1993), Schrĳver (2003). Therefore,
T23(n) � O(n3) holds and the running time of Algo-
rithm F-Decomp is O(nT2(n)) � O(n4). Applying this
algorithm, we find the actual processing times p( j) of
the jobs, and the optimal speeds are given as s( j) �
w( j)/p( j).
Theorem 1. The SSP on m parallel machines to minimize
the function (1) can be solved in O(n4) time.

In the remainder of this section, we consider the SSP,
assuming that the speed cost functions are job inde-
pendent, i.e., the speed cost function becomes Φ of the
form (2). In terms of the decision variables p( j), j ∈ N ,
the objective function Φ is rewritten as

Φ̂�

n∑
j�1

p( j) f
(

w( j)
p( j)

)
, (30)

where f is a convex function, common to all jobs.
We show that in this case, the problem can be solved

faster. The basis of our reasoning is a nontrivial state-
ment due to Murota (1988) and Nagano and Aihara
(2012) that reduces this problem to a quadratic opti-
mization problem.
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Theorem 2 (Murota 1988, Nagano and Aihara 2012). The
problem of minimizing the function (30) over a base polyhe-
dron B(ϕ) is equivalent to

minimize
n∑

j�1

p( j)2
w( j)

subject to p ∈ B(ϕ), (31)

with a separable quadratic objective function.

Thus, to minimize function Φ̂ we do not need Algo-
rithm F-Decomp. Instead, we can solve the prob-
lem (31) of minimizing a quadratic function over a base
polyhedron. In terms of network flow, the latter prob-
lem is a problem of finding a flow in network G∞ that
minimizes a separable quadratic cost function, with
nonzero costs only on the arcs going out of the source.
Exactly such a problem is considered in Gallo et al.
(1989) and Hochbaum and Hong (1995), who reduce
it to the parametric maximum flow problem and show
how to solve it in O(|V |3) � O(n3) time. This observa-
tion can be summarized as the following statement.

Theorem 3. The SSP on m parallel machines to minimize
the function (2) can be solved in O(n3) time.

Notice that the running time O(n3) established in
Theorem 3 is several orders faster than the best pre-
viously known. For a more general problem in The-
orem 1, with job-dependent speed costs, we are not
aware of any prior results.

Remark 3. The results described in this section for
speed scaling problems on identical parallel machines
compare favorably with the results on scheduling
problems with controllable processing times for the
same machine environment. For example, the problem
of minimizing the total compression cost reduces to
the minimum-cost maximum-flow problem with a lin-
ear objective cost function in a network similar to G̃b .
McCormick (1999) shows that the latter problem can
be reduced to the parametric maximum flow problem
and solved in O(n3) time.

Remark 4. In Tian et al. (2010) a generalization of the
speed scaling problem with multiple active intervals
is discussed, where each job j is associated with a
nonempty set of disjoint time intervals

[r( j, 1), d( j, 1)], [r( j, 2), d( j, 2)], . . . , [r( j, s j), d( j, s j)].

Each job j can be processed only within its active inter-
vals, and it is allowed to use several such intervals for
processing job j. Notice that our problem is a special
case of the one studied by Tian et al. (2010), with each
job having a single time interval: s j � 1 for j ∈ N .

Tian et al. (2010) consider the case with a single
machine and job-independent speed cost functions,

and show that the problem can be solved in polyno-
mial time. Next we consider a more general setting,
with multiple machines and/or job-dependent speed
cost functions, and show that the problem can be also
solved in polynomial time by the approach discussed
in this section.

The key idea is to use themodified version of the net-
work G∞ � (V,A) defined as follows. Divide the inter-
val [min j∈N, 1≤k≤s j

r( j, k),max j∈N, 1≤k≤s j
d( j)] into subin-

tervals by using r( j, k) and d( j, k) ( j ∈ N, 1 ≤ k ≤ s j)
as break-points. Denote the resulting subintervals by
I1 , I2 , . . . , Iγ̂, 1 ≤ γ̂ ≤ 2∑

j∈N s j − 1. The node set of the
modified network is given by V � {s , t}∪N∪Ŵ , where
s and t are the source and the sink, N is the set of
job nodes, and Ŵ is the set of interval nodes, i.e., Ŵ �

{I1 , I2 , . . . , Iγ̂}. The arc set A is given as A�As ∪ Â0∪At ,
where

As
� {(s , j) | j ∈ N},

Â0
�

{
( j, Ih) | j ∈ N, 1 ≤ h ≤ γ̂,
job j can be processed in the interval Ih

}
,

At
� {(Ih , t) | 1 ≤ h ≤ γ̂}.

Define the arc capacity function µ: A→�+ in the same
way as in Section 2. Note that the number of nodes in
the modified network is O(∑ j∈N s j).
Applying the approach presented in Sections 2–4

(with appropriate adjustments) to the modified net-
work, it can be shown that the following results hold.

Theorem 4. The speed scaling problem with multiple ac-
tive intervals on m parallel machines can be solved in
O(n(∑ j∈N s j)3) time, if speed cost functions are job depen-
dent, and in O((∑ j∈N s j)3) time, otherwise.

5. Solving SSP on a Single Machine
In this section, we explain the implementation details
of Algorithm F-Decomp for solving the speed scaling
problem in the case of a singlemachine. As in Section 4,
it suffices to explain how to implement Steps 2 and 3 of
Algorithm F-Decomp. The approach we adopt in this
section differs from the one in Section 4.

In Step 2, we need to solve the linear programming
problem (LP) of type (23), where the function ψ �

ψK : 2H → � is given by (18). Recall the explicit repre-
sentation (22) of the function ψ:

ψ(X)�
∑

Ih∈Γ(X∪K)\Γ(K)
∆h , X ⊆ H.

Ameaningful interpretation of ψ(X) is the total length
of the time intervals originally available for processing
the jobs of set X ∪ K after the intervals for processing
the jobs of set K have been completely used up. Hence,
Problem (LP) corresponds to a single machine schedul-
ing problem in which the jobs of set K have already
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been scheduled, and the jobs of set H must be sched-
uled in the remaining available time intervals.
Denote WA � Γ(H ∪ K)\Γ(K) � Γ(H)\Γ(K), which is

the set of these available intervals, and assume that it
consists of the intervals

[τπ(1)−1 , τπ(1)], [τπ(2)−1 , τπ(2)], . . . , [τπ(ν)−1 , τπ(ν)],

where 1 ≤ π(1) < π(2) < · · · < π(ν). We see that the
machine is busy (or unavailable) during the intervals[

min
j∈H

r( j), τπ(1)−1

]
, [τπ(1) , τπ(2)−1], [τπ(2) , τπ(3)−1],

. . . , [τπ(ν−1) , τπ(ν)−1],
[
τπ(ν) ,max

j∈H
d( j)

]
.

We denote the set of these busy intervals by WB , i.e.,
WB � Γ(H) ∩Γ(K).

In Problem (LP), it is required to determine the actual
processing times q( j) of jobs of set H to maximize
the total (unweighted) actual processing time∑

j∈H q( j),
under the conditions that actual processing time q( j)
of each j ∈H satisfies 0 ≤ q( j) ≤ b( j). All jobs in H are
scheduled within the ν intervals of set WA, and no job
j ∈H is scheduled outside the interval [r( j),d( j)]. This
problem is essentially the same as the one discussed in
Hochbaum and Shamir (1990, Section 2) (see also Shih
et al. 1991). This is called the problem of minimizing
the unweighted number of tardyunits,where the objec-
tive is to minimize the total (unweighted) compression
(or tardy units) ∑ j∈H(b( j)−q( j)) instead of maximizing∑

j∈H q( j).
For that problem, Hochbaum and Shamir (1990) pro-

pose an efficient algorithm based on the UNION-FIND
technique and show that the algorithm solves the prob-
lem in O(h + ν) time under the assumption that jobs
in H are appropriately sorted. The algorithm is based
on the latest-release-date-first rule. Informally, the jobs
are taken one by one in the order of their number-
ing and scheduled in a “backwards” manner: each job
j ∈ H is placed into the current partial schedule to fill
the available time intervals consecutively, from right to
left, starting from the right-most available interval. The
assignment of a job j is complete either if its actual pro-
cessing time q( j) reaches its upper bound b( j) or if no
available interval within the interval [r( j), d( j)] is left
(recall that the intervals of set WB are seen as busy).

For our purposes, however, we not only need the
optimal values q∗( j) of the processing times, but also
an instrumental set, i.e., a set Y∗ ⊆ H satisfying (16).
In scheduling terms, for Problem (LP) the jobs of a
set Y∗ completely use all intervals available for their
processing, while the actual processing times q( j) of
the remaining jobs reach their upper bounds b( j). To
find an instrumental set Y∗, we make a slight modi-
fication of the Hochbaum-Shamir algorithm, without
affecting its linear running time. In the description of

the algorithm, the jobs of set H are renumbered by
the integers 1, 2, . . . , h in nonincreasing order of their
release dates, i.e.,

r(1) ≥ r(2) ≥ · · · ≥ r(h); (32)

additionally, if r( j)� r( j + 1) for some j ∈H then d( j) ≤
d( j + 1) holds. For a schedule that is feasible for Prob-
lem (LP) under consideration, an interval duringwhich
the machine is permanently busy, possibly including
the intervals from WB , is called a block. Recall that
a schedule delivered by the Hochbaum-Shamir algo-
rithm can be seen as a collection of blocks separated by
idle intervals.
Algorithm HSY

Step 1. Set Y0
∗ :��.

Step 2. For each job k from 1 to h do
(a) Schedule job k in accordance with the algo-

rithm by Hochbaum and Shamir (1990).
(b) If in the current schedule the interval

[r(k), d(k)] has no idle time, then find a block Bk in
which job k completes and determine the set Yk of
all jobs that complete in the same block; define Yk

∗ :�
Yk−1
∗ ∪Yk . Otherwise (i.e., if in the current schedule the

interval [r(k), d(k)] has an idle time), define Yk
∗ :� Yk−1

∗ .
Step 3. Output Y∗ :� Yh

∗ and stop.
An illustrative example of the behavior of Algo-

rithm HSY is provided in Online Supplement 2. Algo-
rithms similar in nature to Algorithm HSY can be
found in Li et al. (2014) and Shioura et al. (2016).

In what follows we formulate the statements that
show that AlgorithmHSY finds the set Y∗ correctly. The
following lemmas are applied to schedule Sk , which is
the schedule found in Step 2(a) for the jobs 1, . . . , k.

Lemma 4. In schedule Sk any job j ≤ k starts and finishes
in one block.

Proof. Suppose [t1 , t2] and [t3 , t4], where t1 < t2 < t3
< t4, are two consecutive blocks in Sk such that job j,
j ≤ k, is processed in each of these blocks. As a result
of the feasibility of schedule Sk , we have r( j) < t2 < t3 <
d( j), i.e., the interval [t2 , t3] could be used for process-
ing job j, but is left idle. This contradicts to the way the
Hochbaum-Shamir algorithm operates. �

Lemma 5. If the interval [r(k), d(k)] has no idle time in
schedule Sk , then Yk is a tight set.

Proof. Lemma 4 implies that in Step 2(b) of Algo-
rithm HSY, Yk is the set of jobs that start and com-
plete in block Bk . Since job k has the smallest release
date among all jobs in schedule Sk and the interval
[r(k), d(k)] has no idle time, it follows that block Bk is
the interval Î � [r(k), t], where t � max{d( j) | j ∈ Yk}.
Let δ denote the total length of all intervals of set
WB within the interval Î. Then q∗(Yk) � t − r(k) − δ.
On the other hand, no job of set Yk can start before
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time r(k), complete after time t and be assigned to the
intervals of set WB , so that ψ(Yk) � t − r(k) − δ. Thus,
q∗(Yk)� ψ(Yk). �
Notice that output Y∗ in Step 3 is given as the union

of sets Y1 ,Y2 , . . . ,Yh , and each Yk , 1 ≤ k ≤ h, is a tight
set by Lemma 5. Since the union of tight sets is again a
tight set, the equality q∗(Y∗)� ψ(Y∗) holds.

For k ∈ H, if [r(k), d(k)] has no idle time in Sk , then k
is included in Yk , and therefore k ∈ Yk ⊆ Y∗ holds.
Hence, if k ∈ H\Y∗, then [r(k), d(k)] has idle time in Sk ,
implying that q∗(k) � b(k). Thus, set Y∗ found by the
algorithm satisfies (16), i.e., Y∗ is an required instru-
mental set.
Recall that the Hochbaum-Shamir algorithm manip-

ulates the intervals of machine availability organized
in sets of contiguous intervals. In particular, it uses the
FIND function to determine the set that contains any
given original interval by retrieving the first interval
in that set. Moreover, it uses the procedure UNION to
merge two sets of intervals into a new set. Since the
Hochbaum-Shamir algorithm actually determines the
length of processing of each job k in the original inter-
vals of availability, the required block Bk (the set of
intervals that contains the latest interval for process-
ing job k) will be found (see Step 2(b)). To determine
the set Yk of the jobs in block Bk , we assume that for
each block (or a set of intervals) the list of jobs assigned
to be processed in this block is maintained. Once the
jobs of set Yk are added to set Yk

∗ , the corresponding
block together with its list of jobs is deleted. When two
sets of intervals merge (a larger block is formed), the
corresponding lists of jobs are linked. Thus, the run-
ning time of the original algorithm by Hochbaum and
Shamir is not affected. Thus, we have proved that Algo-
rithm HSY solves Problem (LP) and finds a tight set Y∗
in O(h + ν) time.

Analyzing the overall time complexity of Algo-
rithm F-Decomp we observe that the jobs can be
renumbered in accordancewith (32) once in O(n log n),
and the relative order of the jobs does not change
whenever some of the intervals are eliminated to pro-
duce a subproblem. As decomposition reduces to split-
ting the job set and the interval set, its time complexity
is O(h + ν) � O(n), the same as the time complexity
of Steps 2–3. Thus the overall running time of Algo-
rithm F-Decomp is O(n log n + nT23(n))� O(n2).
Theorem 5. The SSP on a single machine to minimize the
function (1) can be solved in O(n2) time.

6. Conclusions
In our study, we have provided a new methodology
for solving the SSP based on submodular optimiza-
tion. Exploiting the properties of the underlying sub-
modular optimization model for different versions of
the SSP, we produce three efficient algorithms, two

of which are based on the decomposition method by
Fujishige (2005).

For the model with a single machine and job-
dependent speed cost functions f j , the decomposition
algorithm can be implemented in O(n2) time, outper-
forming the previous algorithms known for the special
case with a single speed cost function f common for
all jobs: the famous O(n3) YDS algorithm by Yao et al.
(1995) and the alternative O(n2 log n) approach by Li
et al. (2006). Noteworthy, the YDS algorithm is recog-
nized as themost cited result in the speed scaling litera-
ture. For amultimachinemodel, our approach achieves
a substantial speed up in comparison with the existing
ones by Albers et al. (2015) andAngel et al. (2012).

The proposed new methodology provides a new
insight into the underlying optimization model and
demonstrates a potential of handling advanced fea-
tures of enhanced models. It delivers the first efficient
solution method for the most general multimachine
model with job-dependent speed cost functions f j .
Another enhancement we intend to consider in our
future research is the case of nonidentical machines.
Unlike traditional research where processors have the
same speed/energy characteristics, modern large scale
computing environments, such as high performance
computing systems, grids, clouds, server farms, etc.,
often deal with heterogeneous processors. It should be
noted that theoretical research of the relevantmultima-
chine models is quite limited, as highlighted in papers
by Albers (2009, 2010).
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