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Abstract
We consider a range of scheduling problems with controllable processing times, in which the
jobsmust be completed by a common deadline by compressing appropriately their processing
times. The objective is to minimize the maximum compression cost. We present a number
of algorithms based on common general principles adapted with a purpose of reducing the
resulting running times.
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Mathematics Subject Classification 90C27 · 90B35

1 Introduction

The area of Scheduling with Controllable Processing Times (SCPT ) has been active since the
1980s; see surveys [21,26], aswell as the review [31] that covers themost recent developments
in the area. In particular, it is demonstrated in [31] that the SCPTmodels include thosemodels
that have been studied within another popular area of research known as Scheduling with
Imprecise Computation (SIC), see [10,18] for the corresponding reviews.

The range of scheduling problems we address in this paper can be described as follows.
The jobs of set N = {1, 2, . . . , n} should be processed either on a single machine M1 or on
parallel machines M1, M2, . . . , Mm , where m ≥ 2. Job j ∈ N arrives at time r ( j) and must
be completed by time d ( j). Processing of any job can be preempted and resumed later on the
same or on a different machine. In classical scheduling models with fixed processing times,
each job j ∈ N is given a value p ( j) that represents its duration. In the SCPT models, an
actual processing time p ( j) of job j is not known in advance, but has to be chosen from a
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given interval [l( j), u ( j)], where l ( j) and u ( j) are a given lower bound and a given upper
bound on the processing time, respectively. The value x ( j) = u ( j) − p ( j) shows by how
much the largest possible processing time is reduced and is called a compression amount of
job j ∈ N .

In the case of the parallel machines, we distinguish between the identical machines and
the uniform machines. In the former case, the machines have the same speed, so that for a
job j with an actual processing time p( j) the total length of the time intervals in which this
job is processed in a feasible schedule is equal to p( j). If the machines are uniform, then it is
assumed that machine Mi has speed si , 1 ≤ i ≤ m. If for job j the value u( j) is compressed
to p ( j) and this job is assigned to machine Mi alone then the duration of such processing is
p ( j) /si .

A popular range of the SCPT problems addresses issues of determining actual processing
times of the jobs in such a way that there exists an optimal schedule in which no job j ∈ N
is processed outside the interval [r ( j) , d ( j)] and a certain objective � that depends on
compressions x ( j) is minimized. Each job can be associated with a weight w ( j), which
reflects its relative importance. The two following objective functions are among those that
have received most attention:

• Total compression cost �� = ∑
j∈N w ( j) x ( j), and

• Maximum compression cost �max = max {x ( j) /w ( j) | j ∈ N }.
The problems with the �� objective are mainly addressed in the mainstream study of

SCPT, while those with the �max objective are studied within the SIC literature. The most
recent survey [31] indicates that in the most general setting, when the jobs have arbitrary
release dates and arbitrary deadlines, algorithms developed for the problems with the ��

objective for all machine environments and for the �max objective on parallel machines
are not-improvable, since they are as fast as the algorithms for the counterparts with fixed
processing times. If the jobs have a common deadline, for the problems of minimizing ��

algorithms are known that perform faster than in the general case. In this paper, we explore
the unstudied versions of the problems to minimize �max, in which all jobs have a common
deadline d( j) = d .

The SIC models, although they have received considerable separate attention, should be
viewed as one of possible interpretations of the SCPT models. In the SIC models, the jobs
are seen as computational tasks to be processed with preemption in a computing system
that consists either of one processor or of several parallel processors (machines). In com-
puting systems that support imprecise computation, some computations (image processing
programs, implementations of heuristic algorithms) can be run partially, producing less pre-
cise results. In our notation, a task with the processing requirement u( j) can be split into a
mandatory part which takes l ( j) time, and an optional part that may take up to u( j) − l( j)
additional time units. To produce a result of reasonable quality, the mandatory part must be
completed in full, while an optional part improves the accuracy of the solution. If instead
of an ideal computation time u( j) task j is executed for p( j) = u( j) − x( j) time units,
then computation is imprecise and x( j) corresponds to the error of computation. In the SIC
terminology the function �� is called the total weighted error, while �max is known as the
maximum weighted error.

In accordance with standard scheduling notation, a three-field string α|r( j), C( j) ≤
d ( j) , pmtn|− denotes a feasibility problem, in which it is required to verify whether a set
N of jobs with given fixed processing times p ( j), j ∈ N , can be processed with preemption
in such a way that each job j starts no earlier than its release date r ( j) and completes no later
than its deadline d ( j). Here, in the first field we define a machine environment which could
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Table 1 Running times for solving feasibility problems α|r( j),C( j) ≤ d ( j) , pmtn|− and problems α|r( j),
p( j) = u( j) − x( j), C( j) ≤ d ( j), pmtn|�
α Feasibility Total cost � = �� Maximum cost � = �max

1 O (n log n) [9,13] O (n log n) [30] O
(
n2

)
[11]

P O
(
n3

)
[13] O

(
n3

)
[19] O

(
n3

)
[31]

Q O
(
mn3

)
[4] O

(
mn3

)
[19] O

(
mn3

)
[31]

be a single machine (α = 1), m parallel identical machines (α = P), or m parallel uniform
machines (α = Q). In the middle field, the presence of r ( j) means that the jobs may have
individual release date (otherwise, they have a common zero release date). The inequality
C( j) ≤ d ( j) stresses that each job must complete by its deadline, while pmtn points out
that preemptive processing is allowed.

For problemswith controllable processing times, the notation above is extended to become
α|r( j), p( j) = u( j) − x( j), C( j) ≤ d ( j), pmtn|�, where in the middle field we addi-
tionally write p( j) = u( j) − x( j) to emphasize that the actual processing time of each job
is obtained by reducing the largest possible processing time u ( j) by x ( j), while in the third
field � is an objective function that depends on compressions x ( j), j ∈ N .

It is clear that the running time needed to solve a feasibility problem α|r( j), C( j) ≤
d ( j), pmtn|− provides a lower bound on the running time that is required to solve the
corresponding problemα|r( j), p( j) = u( j)−x( j),C( j) ≤ d ( j), pmtn|�. Table 1 presents
the best known running times required for solving the SCPT problems in the most general
setting, i.e., with arbitrary release dates and deadlines, with an objective � ∈ {��,�max},
compared with the running times needed to solve the corresponding feasibility problems.
We see that the SCPT problems on parallel machines are no harder computationally than the
associated feasibility problem. On a single machine, in the case of the �max objective there
is still a complexity gap.

For completeness, we briefly review the algorithmic techniques employed in the methods
listed in Table 1. The single machine feasibility problem 1|r( j),C( j) ≤ d( j), pmtn|− in
principle cannot be solved faster than finding the sorted sequence of the release dates and
deadlines. The best possible running time of O (n log n) for solving the problem is achieved
by the Earliest Deadline First (EDF) scheduling policy designed byHorn [13]. Notice that the
running time of O (n log n) remains the best even if either all release dates are zero or all jobs
have a common deadline. For problem 1|r( j), p( j) = u( j)−x( j),C( j) ≤ d( j), pmtn|�� ,
the running time of O (n log n), which matches that of the EDF algorithm, is obtained due to
reformulating the problem as a linear programming problem over a submodular polyhedron
and finding its solution by a novel decomposition algorithm [30].

The feasibility problems on parallel machines are handled by finding the maximum flow
in the corresponding bipartite networks; see [4,13]. McCormick [19] reduces problems with
the �� objective to finding the maximum flow in networks in which capacities of some
arcs linearly depend on a parameter, individual for each of these arcs. To deal with the
�max objective, Shioura et al. [31] demonstrate that the corresponding SCPT problems can
be reduced to solving lexicographic flow sharing problems in special networks. In these
networks, capacities of some arcs depend on a common parameter and the required flow
sharing problems can be solved bymethods developed in [7],which results into the algorithms
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Table 2 Running times for solving feasibility problems α|r( j),C( j) ≤ d, pmtn|− and problems α|r( j),
p( j) = u( j) − x( j), C( j) ≤ d, pmtn|�
α r( j) Feasibility Total cost

� = ��

Maximum cost � = �max

1 Arbitrary O (n log n) [9,13] O (n log n)

[15,27]
O (n log n), Theorem 1

P Zero O (n) [20] O (n) [16] O (n), Theorem 2

P Arbitrary O (n log n) [22] O (n log n logm)

[29]
O

(
n2

)
, Theorem 3

Q Zero O (n + m logm) [8] O(min{n log n, n+
m logm log n})
[29]

O (n log n + nm), Theorem 5

Q Arbitrary O (nm + n log n) [23] O (mn log n) [29] O
(
mn2

)
, Theorem 6

that run faster than those reported for these problems in the SIC literature [10]. See [31],
where the methodologies outlined above are discussed in detail.

It is quite often required that the jobs must be completed by a common deadline, rather
than by individual deadlines. Besides, it is possible that the jobs do not have specific release
dates but are available simultaneously at time zero. In such situations, there is a hope that
a simplified problem can be solved faster than in the general case. The main purpose of
this paper is to develop fast algorithms for the SCPT problems to minimize the maximum
cost �max for these simplified problems. The summary of our results is presented in the last
column of Table 2. For completeness, we list in that table the results for the relevant feasibility
problems and the SCPT problems to minimize the total compression cost �� .

Notice that for the problems to minimize the objective�� , the results for parallel machine
problems quoted in Table 2 are obtained by reformulating the corresponding problem as a
linear programming problem over a submodular polyhedron and finding its solution by a
novel decomposition algorithm [29]. The only exception is problem P|p( j) = u( j) − x( j),
C( j) ≤ d , pmtn|�� , which is essentially a continuous knapsack problem [16].

2 Problems with a common deadline: general principles

In this section, we outline a generic procedure aimed at solving problems α|r( j), p( j) =
u( j) − x( j), C( j) ≤ d , pmtn|�max for α ∈ {1, P, Q}. We start with some terminology,
including that related to optimization with submodular constraints. For the latter purpose,
we mainly follow a comprehensive monograph on submodular optimization by [6], see also
[17,25].

For a positive integer n, let N = {1, 2, . . . , n} be a ground set, and let 2N denote the
family of all subsets of N . For a subset Y ⊆ N , let R

Y denote the set of all vectors p with
real components p( j), where j ∈ Y . For a vector p ∈ R

N , define p(Y ) = ∑
j∈Y p( j) for

every set Y ∈ 2N .
A set-function ϕ : 2N → R is called submodular if the inequality

ϕ(Y ) + ϕ(Z) ≥ ϕ(Y ∪ Z) + ϕ(Y ∩ Z)
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holds for all sets Y , Z ∈ 2N . For a submodular function ϕ defined on 2N such that ϕ(∅) = 0,
the pair (2N , ϕ) is called a submodular system on N , while ϕ is referred to as its rank function.
For a submodular system (2N , ϕ),

P(ϕ) = {p ∈ R
N | p(Y ) ≤ ϕ(Y ), Y ∈ 2N }

is the submodular polyhedron.
We now define submodular polyhedra for the problems under study. For a set of jobs

Y ⊆ N , let ϕ(Y ) be a set-function that represents the total production capacity available for
processing the jobs of set Y . If we ignore the machine speeds, then ϕ(Y ) is essentially equal
to the length of all time intervals within which the jobs of set Y can be processed. This means
that for a problem with fixed processing times a feasible schedule exists if and only if the
inequality

p(Y ) ≤ ϕ(Y ) (1)

holds for all sets Y ⊆ N .
The actual representation of function ϕ (Y ) is problem dependent. The capacity functions

ϕ for the problems α|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|� are given in [28,29].
Notice that all these functions are submodular.

Given problem α|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�, we always assume that
r ( j) + l ( j) ≤ d for each job j ∈ N ; otherwise the problem is infeasible. Let x ( j) be a
compression amount of job j ∈ N in some feasible schedule. Then in any feasible schedule
0 ≤ x ( j) ≤ u ( j) − l ( j), or, equivalently, l ( j) ≤ p ( j) ≤ u ( j) for each job j ∈ N . A
generic problem α|r( j), p( j) = u( j)− x( j), C( j) ≤ d , pmtn|� associated with a capacity
function ϕ can be formulated as the following problem with the decision variables x ( j),
j ∈ N :

min �(x (1) , . . . , x (n))

s.t. p (Y ) = u (Y ) − x(Y ) ≤ ϕ (Y ) , Y ∈ 2N ,

0 ≤ x( j) ≤ u( j) − l( j), j ∈ N .

(2)

In the case ofminimizing the total cost�� , the objective function is
∑

w ( j) x ( j), and by
switching to the decision variables p ( j) = u ( j) − x ( j), j ∈ N , we can reduce a problem
α|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�� to solving the linear programming
problem of the following structure:

max
∑

j∈N
w( j)p( j)

s.t. p(Y ) ≤ ϕ(Y ), Y ∈ 2N ,

l( j) ≤ p( j) ≤ u( j), j ∈ N .

(3)

Notice that the feasible region of problem (3) is a submodular polyhedron (1) intersected
with the box. For α ∈ {P, Q}, fast algorithms developed in [29] for problems α|r( j), p( j) =
u( j) − x( j), C( j) ≤ d , pmtn|�� are based on reformulation of these problems in terms of
(3). The optimal actual processing times can be found by solving (3), which can be done by
a decomposition algorithm that consists of O (log n) iterations.

The maximum cost �max function is defined by max {x ( j) /w ( j) | j ∈ N }, so that prob-
lem α|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max can be reformulated as

min max {x ( j) /w ( j) | j ∈ N }
s.t. u (Y ) − ϕ(Y ) ≤ x (Y ) , Y ∈ 2N ,

0 ≤ x( j) ≤ u( j) − l( j), j ∈ N .

(4)
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It is convenient to rewrite (4) in terms of new decision variables

λ ( j) = x ( j)

w ( j)
, j ∈ N , (5)

so that problem α|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max reduces to

min max {λ ( j) | j ∈ N }
s.t. u (Y ) − ϕ(Y ) ≤

∑

j∈Y
λ ( j) w ( j) , Y ∈ 2N ,

0 ≤ λ( j) ≤ λ j , j ∈ N .

(6)

where

λ j = u ( j) − l ( j)

w ( j)
. (7)

A variable λ ( j) represents the weighted cost of compressing job j ∈ N . Since for job j
the largest compression is equal to u ( j) − l ( j), which occurs if the actual processing time
of job j is l ( j), the value of λ j represents the largest possible contribution that job j can
make into the objective function �max.

For simplicity of presentation, throughout this paper we assume that the values of λ j

defined by (7) are distinct and the jobs are numbered in such a way that

λ1 = min
{
λ j | j ∈ N

}
, λn = max

{
λ j | j ∈ N

}
. (8)

Denote λ0 := 0. Let� be the list of the λ -values λ0, λ1, . . . , λn . Notice that, unless stated
otherwise, we do not assume that the list � is sorted.

For a job j ∈ N , given a value of λ ∈ [λ0, λn] and λ j defined by (7), define the values of
the decision variables in (6) by

λ ( j) =
{

λ j , if λ j < λ

λ, if λ j ≥ λ
(9)

and compute the associated compressions x ( j) by

x ( j) = λ ( j) w ( j) , j ∈ N . (10)

Here, each of the jobs j with λ j < λ is fully compressed, i.e., x ( j) = u ( j) − l ( j) and
its weighted compression is less than the value of λ. For each of the other jobs, the weighted
compression is equal to λ.

A given λ ∈ [λ0, λn] is said to be feasible for problem α|r( j), p( j) = u( j) − x( j),
C( j) ≤ d , pmtn|�max, if variables λ ( j), j ∈ N , defined by (9) deliver a feasible solution to
problem (6). In scheduling terms, this means that there exists a feasible schedule with actual
processing times equal to u ( j) − x ( j), where compressions x ( j), j ∈ N , satisfy (10). For
a particular problem, we can check whether λ is feasible either analytically (by verifying
certain relations that define the feasible region of problem (6)) or by running an algorithm
that checks the existence of a feasible schedule with constant processing times associated
with the compressions x ( j), j ∈ N .

Below we outline a generic procedure for solving problem α|r( j), p( j) = u( j) − x( j),
C( j) ≤ d , pmtn|�max.

Procedure A

Step 1. Initialization
Compute λ j by (7). If necessary, renumber the jobs so that (8) holds and form the list �.
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Step 2. Check of a trivial solution
If λ = λ0 = 0 is feasible, then the optimal compressions are x∗ ( j) = 0, 1 ≤ j ≤ n,
with the optimal value of the objective function �max equal to zero; otherwise go to
Step 3.
Step 3. Check for infeasibility
If λ = λn is infeasible, then the original problem does not have a feasible solution;
otherwise go to Step 4.
Step 4. Localization search
Examining list �, find the largest infeasible value λ′ and the smallest feasible value λ′′.
Step 5. Finding an optimal solution
Examining the interval

[
λ′, λ′′] find an optimal value λ∗ as the smallest feasible value of

λ ∈ [
λ′, λ′′]. The optimal compressions x∗ ( j) are equal to

x∗ ( j) =
{

λ jw ( j) , if λ j < λ∗
λ∗w ( j) , if λ j ≥ λ∗. (11)

The implementation details of the feasibility checks and of Steps 4 and 5 differ for different
problems, as presented in the remaining parts of this paper.

All problems considered below can be formulated using a generic problem (4). However,
for all these problems there is no need to consider exponentially many inequalities that define
the feasible region and the problems can be solved by fast polynomial-time algorithms.

3 Single machine: arbitrary release dates

In this section, we adapt Procedure A to solving problem 1|r( j), p( j) = u( j) − x( j),
C( j) ≤ d , pmtn|�max.

Assume that the valuesλ j foundby (7) are distinct and the jobs are numbered in accordance
with

0 = λ0 < λ1 < · · · < λn, (12)

so that list � = (λ0, λ1, . . . , λn) is increasing.
Let R(z) denote the zth smallest release date, while N (z) be the set of jobs that arrive no

earlier than time R(z), i.e.

N (z) =
{
j ∈ N |r ( j) ≥ R(z)

}
, (13)

where 1 ≤ z ≤ n.
In order to complete all jobs j ∈ N (z) by the deadline d there must be a sufficient

processing capability. If p ( j) = u ( j) − x ( j) ≥ l ( j) is an actual processing time of job
j ∈ N (z), then the combined duration of the jobs from N (z) should not exceed the length of
the interval [r( j), d], i.e.,

p
(
N (z)

)
= u

(
N (z)

)
− x

(
N (z)

)
≤ d − R(z)

must hold for each z, 1 ≤ z ≤ n; see [9] where that condition is presented (in a different but
equivalent form).

Thus, for problem 1|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max the generic
formulation (4) simplifies, since we do not need to consider all 2n inequalities that define the
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feasible region. The simplified formulation becomes

min max

{
x ( j)

w ( j)
| j ∈ N

}

s.t. u
(
N (z)

)
− d + R(z) ≤ x

(
N (z)

)
, z = 1, . . . , n;

0 ≤ x( j) ≤ u( j) − l( j), j ∈ N .

(14)

Changing the decision variables to λ ( j), j ∈ N , defined by (5) the problem can be
reformulated as

min max {λ ( j) | j ∈ N }
s.t. u

(
N (z)

)
− d + R(z) ≤

∑

j∈N (z)

λ ( j)w ( j) , z = 1, . . . , n;

0 ≤ λ( j) ≤ λ j , j ∈ N .

(15)

For the numbering (12), let us fix an interval I = [
λq , λq+1

]
between two consecutive

elements of list �. For problem 1|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max, in
accordance with (9), a value of λ ∈ I is feasible if

u
(
N (z)

)
− d+R(z) ≤

∑

j∈{1,...,q}∩N (z)

λ jw ( j)+λ
∑

j∈{q+1,...,n}∩N (z)

w ( j) , 1 ≤ z ≤ n. (16)

For each set N (z), 1 ≤ z ≤ n, each of the jobs 1, . . . , q that belongs to that set is fully
compressed. On other hand, each of the jobs q + 1, . . . , n is compressed in such a way that
its compression cost is equal to λ, and none of these jobs, except job q + 1, becomes fully
compressed as long as λ changes within

[
λq , λq+1

]
. All feasibility checks for a given value

of λ can be done in linear time.
Below we present an algorithm that is an adaptation of Procedure A to solving problem

1|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max.

Algorithm A1

Step 1. Find the values R(z) and sets N (z) for z = 1, 2, . . . , n. Compute λ j by (7), sort
them in accordance with (12) and form list � = (λ0 = 0, λ1, . . . , λn).
Step 2. Check if λ = 0 is feasible. If yes, then the optimal compressions are x∗ ( j) =
0, 1 ≤ j ≤ n, with the optimal value of the objective function �max equal to zero;
otherwise, set q = 0 and go to Step 3.
Step 3. Check if λ = λn is feasible. If not, then the original problem does not have a
feasible solution; otherwise set q = n and go to Step 4.
Step 4. Repeat until q = q + 1:

(a) Compute q =
⌈(

q + q
)

/2
⌉

.

(b) Define λ = λq . Compute λ( j) by (9) and the compressions x ( j) by (10). Use
( 16) to check feasibility of λ. If λ is infeasible, then update q := q; otherwise, λ is
feasible and we update q = q .

Step 5.Define q = q . An optimal maximum compression cost λ∗ is the smallest feasible
value of λ ∈ [

λq , λq+1
]
found by

λ∗ = max
1≤z≤n

{
u

(
N (z)

) − d + R(z) − ∑
j∈{1,...,q}∩N (z) λ jw ( j)

∑
j∈{q+1,...,n}∩N (z) w ( j)

}

. (17)

The optimal compressions x∗ ( j) are defined by (11).
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InAlgorithmA1, the loop performed in Step 4 is a binary search procedure that implements
the localization search of Step 4 of Procedure A. We come to Step 5 having found an interval[
λ′, λ′′] = [

λq , λq+1
]
, such that λq is infeasible and λq+1 is feasible.

Step 5 of Algorithm A1 corresponds to Step 5 of Procedure A. Here, all jobs j ≤ q are
fully compressed, while each of the remaining jobs q + 1, . . . , n is compressed in such a
way that its weighted compression cost is equal to a common value λ. The formula (17) for
an optimal value λ∗ is derived from (16).

The binary search in Step 4 consists of O(log n) iterations, each iteration takes O (n)

time. Finding the optimal value of λ∗ in Step 5 also takes O (n) time. Thus, the following
statement holds.

Theorem 1 Problem 1|r( j), p( j) = u( j) − x( j), C( j) ≤ d, pmtn|�max is solvable in
O (n log n) time.

An alternative algorithm for problem 1|r( j), p( j) = u( j)−x( j),C( j) ≤ d, pmtn|�max

of the same running time can be obtained by linking the problem ofminimizing themaximum
compression to the problem of minimizing a quadratic cost function over the same feasible
region.

Based on the input data for problem 1|r( j), p( j) = u( j)− x( j), C( j) ≤ d , pmtn|�max,
define the problem

min
n∑

j=1

1

w( j)
x ( j)2

s.t. u
(
N (z)

)
−

(
d − R(z)

)
≤ x

(
N (z)

)
, z = 1, . . . , n;

0 ≤ x( j) ≤ u( j) − l( j), j ∈ N .

It follows from a general result from [5] and from Sect. 9.2 of [6] on the equivalence
of quadratic and lexicographic optimization with submodular constraints that any optimal
solution to the problem above is also an optimal solution to problem (14). The former problem
can be classified as the resource allocation problem with a separable quadratic function
under nested constraints. Such a problem can be solved in O (n log n) time, as proved in
[12]. A disadvantage of using this approach is that it does not deliver a solution in a closed
form.

Notice that the running time established in Theorem 1 is faster than O
(
n2

)
, the best known

time for a more general problem with distinct release dates, see Table 1. On the other hand,
it matches the running time for solving the feasibility problem 1|r( j), C( j) ≤ d , pmtn|−
with constant processing times; see Table 2.

4 Identical parallel machines: zero release dates

In this section, we address problem P|p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max, in
which all jobs must be scheduled onm identical parallel machines in the time interval [0, d].
Therefore, in any feasible schedule the sum of actual processing times of all jobs p (N )must
not exceed md . Additionally, for each job j its actual processing time p ( j) may not exceed
the deadline d .
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As in Sect. 3, for problem P|p( j) = u( j) − x( j), C( j) ≤ d, pmtn|�max the generic
formulation based on the compression variables x ( j), j ∈ N , can be written as

min max

{
x ( j)

w ( j)
| j ∈ N

}

s.t. u (N ) − md ≤ x (N ) ,

0 ≤ x( j) ≤ u( j) − l ( j) , j ∈ N ,

u( j) − x( j) ≤ d, j ∈ N ,

(18)

see [9,13,27]. We may assume that the last inequality holds with x( j) = u( j) − l( j), i.e.,
l( j) ≤ d , j ∈ N .

Let the values λ j , j ∈ N , be found and the jobs be numbered in accordance with (12).
Changing variables to λ ( j) = x ( j)/w ( j), j ∈ N , the problem can be reformulated as

min max {λ ( j) | j ∈ N }
s.t. u (N ) − md ≤

∑

j∈N
λ ( j) w ( j) ,

0 ≤ λ( j) ≤ λ j , j ∈ N ,

u ( j) − λ( j)w ( j) ≤ d, j ∈ N .

(19)

Similarly to Sect. 3, for problem P|p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max a value
of λ ∈ [

λq , λq+1
]
, 1 ≤ q ≤ n − 1, is feasible if

u (N ) − md ≤
q∑

j=1

λ jw ( j) + λ

n∑

j=q+1

w ( j) ;

u ( j) − d

w ( j)
≤ λ, j = q + 1, . . . , n, (20)

where the second line guarantees that each job j , q + 1 ≤ j ≤ n, in the case of compression
by x ( j) = λw ( j)will get the processing time at most d (jobs 1,…, q are fully compressed).

Suppose that an interval
[
λq , λq+1

]
is found such that λq is infeasible while λq+1 is

feasible. All jobs j ≤ q are fully compressed and no other job, except for job q + 1, may
become fully compressed as long as λ changes within

[
λq , λq+1

]
. An optimal value λ∗ is the

smallest feasible value of λ ∈ [
λq , λq+1

]
, which can be found by

λ∗ = max

{
u (N ) − md − ∑q

j=1 λ jw ( j)
∑n

j=q+1 w ( j)
, max
q+1≤ j≤n

{
u ( j) − d

w ( j)

}}

. (21)

Formula (21) is written under the assumption that the jobs are renumbered in such a way
that the order of λ j ’s is given by (12). Under this assumption, the search for an interval[
λq , λq+1

]
can be performed in O (n log n) time, by a straightforward adaptation of Algo-

rithm A1.
However, as shown below, for problem P|p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max it

is possible to perform the localization search in Step 4 of Procedure A in linear time without
ordering the values λ j , 1 ≤ j ≤ n, by (12) but rather keeping them in an unsorted list �.
The corresponding algorithm is outlined below. Its running time reduces to O (n).

The algorithm follows Procedure A and employs a searchmechanism based on themedian
finding technique.Thismechanismallowsus splitting the set N of jobs into two subsets N ′ and
N ′′ such that there exists an optimal schedule in which each job j ∈ N ′ is fully compressed,
while the weighted compression cost for each job of set N ′′ is equal to the optimum value
λ∗. During the course of the algorithm, we keep track of set H of the candidate jobs which
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are not yet assigned either to N ′ or to N ′′. In each iteration for a λ equal to the median of the
current list � set H is split into two subsets H ′ and H ′′ which are used for updating either
set N ′ or set N ′′. To speed up the algorithm, we keep records of the total compression V ′ of
the current jobs in N ′ and total weight W ′′ of the current jobs in N ′′.

Algorithm AP0

Step 1. Compute λ j , j ∈ N , by (7). If necessary, renumber the jobs so that (8) holds and
form an unsorted list �.
Step 2. Check if λ0 = 0 is feasible. If yes, then the optimal compressions are x∗ ( j) =
0, 1 ≤ j ≤ n, with the optimal value of the objective function �max equal to zero;
otherwise, go to Step 3.
Step 3. Check if λ = λn is feasible. If not, then the original problem does not have a
feasible solution; otherwise define N ′ := N ′′ := ∅, H := N , V ′ := W ′′ := 0 and go to
Step 4.
Step 4. Repeat until list � is empty:

(a) Find λ̂, the median of the list �, and set

H ′ :=
{
j ∈ H | λ j ≤ λ̂

}
.

(b) Check the inequalities

u (N ) −
(

V ′ +
∑

j∈H ′
λ jw( j)

)

− λ̂

(

W ′′ +
∑

j∈H\H ′
w( j)

)

≤ md,

u ( j) − λ jw ( j) ≤ d, j ∈ H ′,
u ( j) − λ̂w ( j) ≤ d, j ∈ H\H ′.

(c) If the above inequalities do not hold simultaneously (i.e., λ̂ is infeasible), then
update

V ′ := V ′ +
∑

j∈H ′
λ jw( j), N ′ := N ′ ∪ H ′, H := H\H ′,

and remove λ j with j ∈ H ′ from the list �.

Otherwise (i.e., λ̂ is feasible), find H ′′ =
{
j ∈ H | λ j ≥ λ̂

}
and update

W ′′ := W ′′ +
∑

j∈H ′′
w ( j) , N ′′ := N ′′ ∪ H ′′, H := H\H ′′,

and remove λ j with j ∈ H ′′ from the list �.

Step 5. An optimal maximum compression cost λ∗ is found by

λ∗ = max

{
u (N ) − md − V ′

W ′′ , max
j∈N ′′

{
u ( j) − d

w ( j)

}}

. (22)

In each iteration of Step 4, let h be the number of elements in the current list � (or,
equivalently, in set H ). Then the feasibility check and the transition to the next iteration
require O (h) time. After each iteration, the number of jobs in the list � is halved. Thus, the
total time needed for finding the required interval is

O (n) + O
(n

2

)
+ O

(n

4

)
+ · · · = O (n) .
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Formula (22) is an adaptation of (21), so that in terms of Step 5 of Procedure A the last
found infeasible λ will play the role of λq , while λq+1 is the smallest element of the initial
list � that is larger than λ. Finding the optimal value of λ∗ in Step 5 takes O (n) time.

Thus, the following statement holds.

Theorem 2 Problem P|p( j) = u( j) − x( j), C( j) ≤ d, pmtn|�max is solvable in O (n)

time.

Similarly toSect. 3, consider the problemofminimizing the function
∑

j∈N (1/w ( j))x ( j)2

under the same constraints as in (18). Such a problem of quadratic programming is qualified
as the simple resource allocation problem and can be solved in O (n) time [12]. Since any
optimal solution of that resource allocation problem is also an optimal solution to problem
(18), we obtain an alternative linear time algorithm for problem P|p( j) = u( j) − x( j),
C( j) ≤ d , pmtn|�max.

Notice that the established running time matches the running time needed for solving the
feasibility problem P|C( j) ≤ d , pmtn|− with constant processing times, as well as that
needed for solving problem P|p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�� to minimize total
compression cost; see Table 2.

5 Identical parallel machines: arbitrary release dates

The difference between problems P|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max and
1|r( j), p( j) = u( j)− x( j), C( j) ≤ d , pmtn|�max is that now we have m identical parallel
machines. We can adapt and extend Algorithm A1 to handle the parallel machine problem.

Similarly to Sect. 3, given problem P|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max,
let R(z) denote the zth smallest release date, 1 ≤ z ≤ n.

Perform Steps 1–4 of Algorithm A1, where the feasibility check is done by running an
algorithm by Sahni [22], which in O (n log n) time verifies feasibility of problem P|r( j),
C( j) ≤ d, pmtn|− with fixed processing times. Since there are log n iterations in Step 4 of
Algorithm A1, we arrive at Step 5 in O

(
n log2 n

)
time, having found an interval

[
λq , λq+1

]

such that λq is infeasible while λq+1 is feasible, 0 ≤ q ≤ n − 1. Notice that unlike Algo-
rithm AP0, for the problem with arbitrary release dates Step 4 cannot be implemented in
linear time by the median-finding technique. Indeed, even if the processing times of some
jobs are fixed checking the feasibility of a given λq requires time that is no less than linear
in n.

We now explain how the optimal value of λ∗ can be found in Step 5 and how such a search
can be implemented in O

(
n2

)
time. Notice that even if a speed-up in Step 4 was possible it

would not affect the overall running time of the algorithm.
To implement the search in Step 5 we cannot rely just on the feasibility check algorithm

by Sahni [22]. We rather need to base our search on relevant analytical expressions. Recall
that the necessary and sufficient conditions for the existence of a schedule that is feasible for
problem P|r( j), C( j) ≤ d , pmtn|− with fixed processing times p ( j), j ∈ N , are obtained
by Horn [13]. For each job j ∈ N and each z, 1 ≤ z ≤ n, Horn [13] determines the value
g(z) ( j), which represents the minimum duration of the processing of job j after time R(z) in
any feasible schedule. Such values can be found by

g(z) ( j) =
{
p ( j) , if r ( j) ≥ R(z),

max
{
p ( j) − (

R(z) − r ( j)
)
, 0

}
, otherwise.
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It is proved in Theorem 2 of [13] that for problem P|r( j), C( j) ≤ d, pmtn|− a feasible
schedule exists if and only if the inequality

∑

j∈N
g(z) ( j) ≤ m

(
d − R(z)

)
(23)

holds for all z, 1 ≤ z ≤ n, provided that

p ( j) ≤ d − r ( j) , j ∈ N . (24)

For problem P|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max, as λ changes within
the found interval

[
λq , λq+1

]
, two types of jobs can be distinguished. First, each job j with

λ j ≤ λq is fully compressed, i.e., its actual processing time p ( j) is equal to l ( j) and remains
constant. Second, for the remaining jobs p ( j) = u ( j) − λw ( j). Moreover, for each job j
with r ( j) < R(z), the value g(z) ( j) computedwith respect to the actual processing time p ( j)
should be treated as a function g(z) ( j, λ) which is piecewise linear in λ, with a break-point

μ(z) ( j) = u ( j) + r ( j) − R(z)

w ( j)
. (25)

Let λ ∈ [
λq , λq+1

]
be feasible and λ( j) be defined by (9). Then it follows from (24) that

the inequality
λ( j)w ( j) ≥ u ( j) − d + r ( j)

holds for all j , 1 ≤ j ≤ n. Additionally, (23) implies that the inequality
∑

j∈N
g(z) ( j, λ) ≤ m

(
d − R(z)

)
(26)

holds for all z, 1 ≤ z ≤ n, where

g(z) ( j, λ) =
{
u ( j) − λ( j)w ( j) , if r ( j) ≥ R(z),

max
{
u ( j) − λ( j)w ( j) − (

R(z) − r ( j)
)
, 0

}
, otherwise.

(27)

Notice that in (27) the values g(z) ( j, λ) depend on λ ( j), which means they depend on λ

implicitly, due to (9).
Below we provide a possible implementation of the search for an optimal λ∗.

Step 5.

(a) Compute the break-points μ(z) ( j), 1 ≤ z ≤ n, 1 ≤ j ≤ n, by (25) and remove
those which do not belong to the interval

[
λq , λq+1

]
. Let M be an unsorted list of

the remaining μ-values.
(b) Repeat until list M contains two distinct elements:
Find μ̂, the median of the list M . If μ̂ is infeasible, then remove from list M all
elements less than μ̂; otherwise, remove from list M all elements larger than μ̂.
(c)Letμ′ andμ′′ be the two remaining elements of listM . For λ ∈ [

μ′, μ′′], compute
λ ( j) by (9) and g(z) ( j, λ) by (27), 1 ≤ z ≤ n, 1 ≤ j ≤ n.
(d) Find an optimal λ∗ as the smallest feasible λ ∈ [

μ′, μ′′] . The optimal compres-
sions x∗ ( j) are defined by (11).

Let us analyze Step 5 described above. Computation in Step 5(a) requires O
(
n2

)
time.

Step 5(b) is the median-based search similar to that employed in Algorithm AP0. The com-
putation related to repeated median-finding in the list initially consisting of O(n2) elements
takes O(n2) time for all iterations. Additionally, feasibility checks are performed for each
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trial μ-value by running the algorithm by Sahni [22]. Since after each iteration the number
of elements in list M is halved, there are log

(
n2

) = O (log n) iterations in this step to locate
an interval

[
μ′, μ′′] ⊂ [

λq , λq+1
]
such that the value of μ′ is infeasible, while the value of

μ′′ is feasible, so that all feasibility checks take O
(
n log2 n

)
time. The latter estimate defines

the overall time complexity of Step 5(b).
As λ changes within

[
μ′, μ′′], each g(z) ( j, λ) defined in Step 5(c) does not change its

shape, i.e., remains either constant or linear in λ. All such g(z) ( j, λ), j ∈ N , 1 ≤ z ≤ n, can
be found in O

(
n2

)
time. For each relevant z, 1 ≤ z ≤ n, the sum

∑
j∈N g(z) ( j, λ) involved

in (26) is linear in λ and can be computed in O (n) time as the sum of linear functions. Thus,
an optimal value of λ that satisfies the condition (26) can be found in O

(
n2

)
time.

The overall running time of Step 5 is O
(
n2

)
and the following statement holds.

Theorem 3 Problem P|r ( j) , p( j) = u( j) − x( j), C( j) ≤ d, pmtn|�max is solvable in
O

(
n2

)
time.

Notice that the established running time exceeds the running time of O (n log n) needed
for solving the feasibility problem P|r ( j) ,C( j) ≤ d , pmtn|− with constant processing
times, as well as the running time of O (n log n logm), the best known time for solving
problem P|r ( j) , p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�� to minimize total compression
cost; see Table 2.

6 Uniform parallel machines: zero release dates

Consider problem Q|p( j) = u( j)− x( j), C( j) ≤ d , pmtn|�max in which the jobs have no
release dates and the machines are numbered in non-increasing order of their speeds, i.e.,

s1 ≥ s2 ≥ · · · ≥ sm . (28)

This problem can be solved by adapting the general scheme, in a similar manner as presented
in Sect. 5.

Perform actions described in Steps 1–4 of Algorithm A1 (notice no finding of R(z) and
N (z) is needed since all release dates are the same). The sorted list � = (λ0, λ1, . . . , λn)

is searched until an interval
[
λq , λq+1

]
if found, such that λq is infeasible while λq+1 is

feasible, 0 ≤ q ≤ n − 1. The feasibility check for a trial value of λ is done by running an
algorithm by Gonzalez and Sahni [8] which in O (n + m logm) time verifies feasibility of
problem Q|C( j) ≤ d, pmtn|− with fixed processing times.

In O (n log n + m logm log n) time we arrive at Step 5. We only need to explain how the
optimal value of λ∗ ∈ [

λq , λq+1
]
is to be found in Step 5. As in Sect. 5, for this stage of the

search we need to explore the explicit feasibility conditions for the underlying problem with
fixed processing times.

Such conditions for problem Q|C( j) ≤ d, pmtn|− are well-known. Below, we present
them following [2]. All jobs can be completed by time d , provided that

• Any job can be completed by time d if it is processed on the fastest machine M1,
• For any v, 2 ≤ v ≤ m − 1, any subset of v jobs can be completed by d on the v fastest

machines M1, M2, . . . , Mv;
• All jobs can be completed by d on all m machines.

For a takenλ ∈ [
λq , λq+1

]
, define the compressions x ( j)by (10) and the actual processing

times p ( j) = u ( j) − x ( j). For v, 1 ≤ v ≤ m − 1, let N [v] (λ) be the set of v jobs with the
longest processing times. Then λ is feasible if
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p
(
N [v] (λ)

) ≤ d
v∑

i=1

si , 1 ≤ v ≤ m − 1;

p (N ) ≤ d
m∑

i=1

si .

As λ changes within
[
λq , λq+1

]
, we need to monitor (i) the sets N [v] (λ) of v longest jobs,

1 ≤ v ≤ m − 1, and (ii) the relative order of these jobs. In other words, as λ changes we
need to keep the information regarding the m − 1 longest jobs.

Consider a job j ∈ N such that λ j > λq , i.e., its compression x ( j) = λqw ( j) is smaller
than its largest possible compression u ( j)− l ( j). For another job k ∈ N , also with λk > λq ,
the relative order of the actual processing times of the jobs j and k changes as λ passes the
point that is the solution of the equation

u ( j) − λw ( j) = u (k) − λw (k) .

On the other hand, a job k ∈ N such that λk ≤ λq is fully compressed and its actual time
remains equal to l (k) as λ changes. The relative order of the actual processing times of the
jobs j and k changes as λ passes the point that is the solution of the equation

u ( j) − λw ( j) = l (k) .

Below we provide a possible implementation of the search for an optimal λ∗.

Step 5.

(a) For j ∈ N with λ j > λq , compute the break-points μ jk , 1 ≤ k ≤ n, k 
= j , by

μ jk =

⎧
⎪⎨

⎪⎩

u( j)−u(k)
w( j)−w(k) for k ∈ N , k 
= j, λk > λq

u( j)−l(k)
w( j) for k ∈ N , λk ≤ λq

(29)

and remove those μ-values which do not belong to the interval
[
λq , λq+1

]
. Let M be

an unsorted list of the remaining μ-values.
(b) Repeat until list M contains two distinct elements:
Find μ̂, the median of the list M . If μ̂ is infeasible, then remove from list M all
elements less than μ̂; otherwise, remove from list M all elements larger than μ̂.
(c) Let μ′ and μ′′ be the two remaining elements of list M . Find an optimal λ∗ as the
smallest feasible λ ∈ [

μ′, μ′′] by

λ∗ = max
{
λ̃, λ̄

}
,

where

λ̃ := max
1≤v≤m−1

{
u

(
N (v) (μ̃)

) − d
∑v

i=1 si − ∑
j∈{1,...,q}∩N [v](μ̃) λ jw ( j)

∑
j∈{q+1,...,n}∩N [v](μ̃) w ( j)

}

,

λ̄ := u (N ) − d
∑m

i=1 si − ∑q
j=1 λ jw ( j)

∑n
j=q+1 w ( j)

,

and μ̃ is the midpoint of the interval
[
μ′, μ′′]. The optimal compressions x∗ ( j) are

defined by (11).

123



486 Journal of Global Optimization (2020) 76:471–490

Step 5 described above is similar to Step 5 presented in Sect. 5. Computation in Step 5(a)
requires O

(
n2

)
time. Step 5(b) is the median-based search, which requires O(n2) time

for all iterations. The feasibility check of each trial μ-value is performed by running an
algorithm by Gonzalez and Sahni [8]. Since there are O(log n) iterations, finding an interval[
μ′, μ′′] ⊂ [

λq , λq+1
]
such that the value ofμ′ is infeasible, while the value ofμ′′ is feasible

takes O
(
n2 + m logm log n

)
time.

As λ changes within the interval
(
μ′, μ′′] the sets N [v] (λ) of v longest jobs do not change.

In the formula for computing λ∗ in Step 5(c) any value of μ ∈ (
μ′, μ′′) can be used, and for

certainty we have selected μ̃ as the midpoint of the interval
[
μ′, μ′′].

The overall running time of Step 5 is O
(
n2

)
. Thus, the following statement holds.

Theorem 4 Problem Q|p( j) = u( j) − x( j), C( j) ≤ d, pmtn|�max is solvable in O
(
n2

)

time.

The established running time can be reduced by making an observation that not all O
(
n2

)

breakpoints μ jk computed in Step 5(a) are needed, but only those which affect a relative
order of the v longest jobs for 1 ≤ v ≤ m − 1. Finding these relevant breakpoints can be
reduced to the following problem of computational geometry. As observed earlier, after the
interval

[
λq , λq+1

]
is located, each job j ∈ N can belong to one of the following categories:

(i) incompressible with the actual processing time of l ( j), and (ii) compressible with the
actual time of u ( j) − λw ( j). A job can be associated with a straight line on the plane, with
λ as the independent variable. The relevant break-points are in fact those intersection points
of these straight lines that at most m − 1 straight lines are located above them. The problem
of finding all such intersection points is known as the problem of determining (≤ k)-levels
for an arrangement of lines; see [1] and [3]. In particular, adapting the algorithm from [3] to
our purposes, we can replace Step 5(a) above by finding the (≤ m − 1)-levels for the n lines
associated with the jobs. As a result, we will obtain the list M of the relevant break-points
of the form (29) in O (n log n + nm) time, the number of these break-points being O(nm).
The median-based search in Step 5(b) requires O (nm) time. Thus, the overall running time
that is needed for solving problem Q|p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max reduces
to O (n log n + nm).

Theorem 5 Problem Q|p( j) = u( j) − x( j), C( j) ≤ d, pmtn|�max is solvable in
O (n log n + nm) time, provided that the method of determining (≤ k)-levels is employed.

The resulting running time exceeds the running time of O (n + m logm) needed for solv-
ing the feasibility problem Q|C( j) ≤ d , pmtn|− with constant processing times, as well
as the running time of O (min {n log n, n + m logm log n}), the best known time for solving
problem Q|p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�� to minimize total compression cost;
see Table 2.

7 Uniform parallel machines: arbitrary release dates

In this section, we consider problem Q|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max

in which the jobs have release dates and the machines are numbered according to (28).
Below, we outline a rather universal approach to finding an optimal value λ∗ of the objec-

tive function for a generic problem α|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max. In
principle, this approach can be used to solve any of the problems of the range under consid-
eration. However, the SCPT problems from Sects. 3–6 due to their relative simplicity can be
handled by faster purpose-built algorithms.
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Consider problem α|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max formulated by
(6) with respect to an appropriate capacity function ϕ. Suppose that the actions described in
Steps 1–4 of Procedure A have been performed and we have localized an interval

[
λ′, λ′′]

such that λ′ is infeasible while λ′′ is a feasible value of λ. For λ = λ′, let U denote the set
of the incompressible jobs j with the actual processing time l ( j). The jobs of set N\U are
compressible, and the actual processing time of job j ∈ N\U is equal to u ( j) − λw ( j).

For the sake of simplicity of the algorithm description, we redefine

w( j) = 0, u( j) = l( j) for each incompressible job j ∈ U , (30)

so that u ( j) − λw ( j) = l( j) holds for j ∈ U and λ ∈ [λ′, λ′′]. This also implies that
w (Y ) = w(Y\U ) holds for any set Y ⊆ N . Therefore, λ ∈ [λ′, λ′′] is feasible if and only if

λw(Y ) − u (Y ) + ϕ (Y ) ≥ 0 for any Y ⊆ N . (31)

The value λ∗ (the optimal value of λ) can be defined as the minimum feasible value of
λ ∈ [

λ′, λ′′] such that

λ∗ = min
{
λ ∈ [

λ′, λ′′] | λw(Y ) − u (Y ) + ϕ (Y ) ≥ 0, Y ⊆ N
}
.

In other words, λ∗ is such a value within the interval
[
λ′, λ′′] that

λ∗ = max
Y⊆N

u(Y ) − ϕ(Y )

w(Y )
.

For a set Y ⊆ N\U , introduce a parametric set-function

f (Y , λ) = λw(Y ) − u (Y ) + ϕ (Y ) , Y ⊆ N , λ ∈ [λ′, λ′′].
It follows from (31) that λ ∈ [λ′, λ′′] is feasible if and only if for each set Y ⊆ N the
inequality f (Y , λ) ≥ 0 holds. Therefore, we need to find the smallest value λ∗ ∈ [

λ′, λ′′]

such that
min
Y⊆N

f
(
Y , λ∗) = 0.

The required λ∗ can be found by a Newton-like search procedure, similar to that presented
in [7].

Procedure Newton

Step 1. Take λ(1) = λ′. Find set U of incompressible jobs, and redefine w( j) and u( j)
for j ∈ U by (30). Set k = 1.
Step 2. Find the minimal (with respect to inclusion) set-minimizer Y (k) such that

f (Y (k), λ(k)) = min
{
λ(k)w (Y ) − u(Y ) + ϕ (Y ) | Y ⊆ N

}
.

Step 3. If f
(
Y (k), λ(k)

) = 0 then output λ∗ = λ(k) and stop. Otherwise, find

λ(k+1) = u(Y (k)) − ϕ(Y (k))

w(Y (k))

such that f
(
Y (k), λ(k+1)

) = 0. Set k := k + 1 and go back to Step 2.

Due to the minimality of the set-minimizers in Step 2, we have that N ⊇ Y (k) ⊃ Y (k+1)

for each k ≥ 1, so that the procedure consists of at most n iterations. Since the capacity
function ϕ (Y ) is submodular for all problems of the range under consideration, the search
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for a set-minimizer Y (k) in Step 2 reduces to minimizing a submodular function, which in
general can be done in polynomial time, see [14,24].

We now describe how to implement this approach for solving problem Q|r( j), p( j) =
u( j) − x( j), C( j) ≤ d , pmtn|�max, the most general problem from the range under con-
sideration of the SCPT problems with a common deadline.

Run Steps 1–4 of Procedure A, or rather of Algorithm A1, where the feasibility check is
done by running an algorithm by Sahni and Cho [23] which in O (nm + n log n) time verifies
feasibility of problem Q|r( j), C( j) ≤ d, pmtn|− with fixed processing times.

In O
(
nm log n + n log2 n

)
time we arrive at Step 5, having found an interval

[
λq , λq+1

]

such that λq is infeasible while λq+1 is feasible, 0 ≤ q ≤ n − 1. We only need to explain
how the optimal value of λ∗ is to be found in Step 5, where we use Procedure Newton.

As in Sects. 3 and 5, let R(z) denote the zth smallest release date. Extending this notation,
for a set Y ⊆ N define R(z) (Y ) as the z th smallest release date among the jobs of set Y . For
a set Y ⊆ N , denote mY = min {m, |Y |}.

Let the machines be numbered by (28). As follows from [28,29], the capacity set-function
that defines the largest capacity for preemptive processing a set Y of jobs on m uniform
parallel machines can be written as

ϕ (Y ) =
mY∑

z=1

sz
(
d − R(z) (Y )

)
.

Let U be the set of incompressible jobs found with respect to λ = λq . In Step 2 of an
iteration k in Procedure Newton, we need to minimize λ(k)w (Y ) − u(Y ) + ϕ (Y ) . Let each
job j ∈ N be associated with a real number

γ ( j) = λ(k)w ( j) − u( j).

For a set Y ⊆ N , define a set-functionψ(Y ) = γ (Y )+ϕ (Y ), which is submodular, since
function ϕ is submodular. It is shown in [29] that a set-minimizer Y ∗ of the functionψ can be
found inO (nm) time, provided that the jobs are numbered in the non-decreasing order of their
release dates. In order to guarantee minimality of the minimizer Y ∗, instead of minimizing
ψ (Y ) we minimize a function ψε (Y ) := ψ (Y ) + ε|Y | for an arbitrary small positive ε.
A set-minimizer for function ψε (Y ) is a minimal set-minimizer for function ψ (Y ). Such a
modification does not affect the time needed for finding the set-minimizer. Time needed to
find λ∗ in Step 5 by employing Procedure Newton is O

(
mn2

)
, and this determines the overall

running time for solving problem Q|r( j), p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�max.
Thus, the following statement holds.

Theorem 6 Problem Q|r ( j) , p( j) = u( j) − x( j), C( j) ≤ d, pmtn|�max is solvable in
O

(
mn2

)
time.

Notice that the established running time exceeds the running time needed for solving the
feasibility problem Q|r ( j) ,C( j) ≤ d , pmtn|− with constant processing times, as well as
that needed for solving problem Q|r ( j) , p( j) = u( j) − x( j), C( j) ≤ d , pmtn|�� to
minimize the total compression cost; see Table 2. On the other hand, O

(
mn2

)
is less than the

time needed for solving problem Q|r ( j) , p( j) = u( j) − x( j), C( j) ≤ d ( j), pmtn|�max

with arbitrary due dates; see Table 1.
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8 Conclusions

In this paper we address a range of open problems arising in SCPT. The traditional stream
of research on SCPT focuses on the �� objectives. The research on the SIC models does
consider �max but in the most general setting, when all jobs have arbitrary release dates and
arbitrary deadlines. The subject of our study are the models with �max under an assumption
that all jobs have a common deadline.

The general methodologywe propose stems from the special representation of the solution
region as a submodular polyhedron intersected with a box. It can be efficiently implemented
for all versions of the problem under study, generically denoted by α|r ( j) , p( j) = u( j) −
x( j),C( j) ≤ d , pmtn|�max for α ∈ {1, P, Q} (the models with a single machine, identical
parallel machines and uniform machines).

For the two models, one with α = 1 and arbitrary r j and another with α = P and
r j = 0 for all jobs, our approach results in the fastest possible algorithms, with the same
running times as the algorithms for the counterparts with fixed processing times, see the
first two lines of Table 2. For the remaining three models the complexity gap is reduced, in
comparison with the results from [10,18], but not closed. A similar phenomenon is observed
for the problems of minimizing the the �� objective. It remains to be seen whether further
reduction of the complexity gap is possible. In particular, it is a challenging goal to verify
whether any of the problems P|r ( j) , p( j) = u( j) − x( j),C( j) ≤ d , pmtn|�max and
P|r ( j) , p( j) = u( j) − x( j),C( j) ≤ d , pmtn|�� admits an O (n log n)-time algorithm.
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