28 research outputs found

    Impairment and Restoration of Homeostatic Plasticity in Cultured Cortical Neurons From a Mouse Model of Huntington Disease

    Get PDF
    Huntington disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the huntingtin gene. The onset of symptoms is preceded by synaptic dysfunction. Homeostatic synaptic plasticity (HSP) refers to processes that maintain the stability of networks of neurons, thought to be required to enable new learning and cognitive flexibility. One type of HSP is synaptic scaling, in which the strength of all of the synapses onto a cell increases or decreases following changes in the cell’s level of activity. Several pathways implicated in synaptic scaling are dysregulated in HD, including brain-derived neurotrophic factor (BDNF) and calcium signaling. Here, we investigated whether HSP is disrupted in cortical neurons from an HD mouse model. We treated cultured cortical neurons from wild-type (WT) FVB/N or YAC128 HD mice with tetrodotoxin (TTX) for 48 h to silence action potentials and then recorded miniature excitatory postsynaptic currents. In WT cultures, these increased in both amplitude and frequency after TTX treatment, and further experiments showed that this was a result of insertion of AMPA receptors and formation of new synapses, respectively. Manipulation of BDNF concentration in the culture medium revealed that BDNF signaling contributed to these changes. In contrast to WT cortical neurons, YAC128 cultures showed no response to action potential silencing. Strikingly, we were able to restore the TTX-induced changes in YAC128 cultures by treating them with pridopidine, a drug which enhances BDNF signaling through stimulation of the sigma-1 receptor (S1R), and with the S1R agonist 3-PPP. These data provide evidence for disruption of HSP in cortical neurons from an HD mouse model that is restored by stimulation of S1R. Our results suggest a potential new direction for developing therapy to mitigate cognitive deficits in HD

    Properties of generalized univariate hypergeometric functions

    Get PDF
    Based on Spiridonov's analysis of elliptic generalizations of the Gauss hypergeometric function, we develop a common framework for 7-parameter families of generalized elliptic, hyperbolic and trigonometric univariate hypergeometric functions. In each case we derive the symmetries of the generalized hypergeometric function under the Weyl group of type E_7 (elliptic, hyperbolic) and of type E_6 (trigonometric) using the appropriate versions of the Nassrallah-Rahman beta integral, and we derive contiguous relations using fundamental addition formulas for theta and sine functions. The top level degenerations of the hyperbolic and trigonometric hypergeometric functions are identified with Ruijsenaars' relativistic hypergeometric function and the Askey-Wilson function, respectively. We show that the degeneration process yields various new and known identities for hyperbolic and trigonometric special functions. We also describe an intimate connection between the hyperbolic and trigonometric theory, which yields an expression of the hyperbolic hypergeometric function as an explicit bilinear sum in trigonometric hypergeometric functions.Comment: 46 page

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    A multi-color quantum well photodetector for mid- and long-wavelength infrared detection

    No full text
    The authors report a two-color quantum well infrared photodetector at room temperature operating in the mid- and long-wavelength infrared detection. To this purpose, the band alignment is tailored and electronic properties are investigated for the proposed structure based on Ga1−xInxAsySb1−y/GaSb and AlxGa1−xAsySb1−y/GaSb. As accurate knowledge of band offsets is required in device modeling, we have proceeded to theoretical investigations of the band offsets for pseudo-morphically strained and lattice-matched Ga1−xInxAsySb1−y/GaSb and AlxGa1−xAsySb1−y/GaSb heterointerfaces in the whole range of alloy compositions 0 ≤ x, y ≤ 1. The carrier effective masses are deduced from the laws extracted from the k.p strain Hamiltonian laws. For the modeled heterostructure, the dark current of about 10−1 A cm−2 at ambient temperature shows the high performance of this multi-color infrared photodetector around 5 and 12.5 µm wavelengths

    Organ- and function-specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation

    No full text
    Vagal fibers travel inside fascicles and form branches to innervate organs and regulate organ functions. Existing vagus nerve stimulation (VNS) therapies activate vagal fibers non-selectively, often resulting in reduced efficacy and side effects from non-targeted organs. The transverse and longitudinal arrangement of fibers inside the vagal trunk with respect to the functions they mediate and organs they innervate is unknown, however it is crucial for selective VNS. Using micro-computed tomography imaging, we tracked fascicular trajectories and found that, in swine, sensory and motor fascicles are spatially separated cephalad, close to the nodose ganglion, and merge caudad, towards the lower cervical and upper thoracic region; larynx-, heart- and lung-specific fascicles are separated caudad and progressively merge cephalad. Using quantified immunohistochemistry at single fiber level, we identified and characterized all vagal fibers and found that fibers of different morphological types are differentially distributed in fascicles: myelinated afferents and efferents occupy separate fascicles, myelinated and unmyelinated efferents also occupy separate fascicles, and small unmyelinated afferents are widely distributed within most fascicles. We developed a multi-contact cuff electrode to accommodate the fascicular structure of the vagal trunk and used it to deliver fascicle-selective cervical VNS in anesthetized and awake swine. Compound action potentials from distinct fiber types, and physiological responses from different organs, including laryngeal muscle, cough, breathing, and heart rate responses are elicited in a radially asymmetric manner, with consistent angular separations that agree with the documented fascicular organization. These results indicate that fibers in the trunk of the vagus nerve are anatomically organized according to functions they mediate and organs they innervate and can be asymmetrically activated by fascicular cervical VNS
    corecore