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Abstract: Based on Spiridonov’s analysis of elliptic generalizations of the Gauss hyper-
geometric function, we develop a common framework for 7-parameter families of gen-
eralized elliptic, hyperbolic and trigonometric univariate hypergeometric functions. In
each case we derive the symmetries of the generalized hypergeometric function under
the Weyl group of type E7 (elliptic, hyperbolic) and of type Eg (trigonometric) using
the appropriate versions of the Nassrallah-Rahman beta integral, and we derive contigu-
ous relations using fundamental addition formulas for theta and sine functions. The top
level degenerations of the hyperbolic and trigonometric hypergeometric functions are
identified with Ruijsenaars’ relativistic hypergeometric function and the Askey-Wilson
function, respectively. We show that the degeneration process yields various new and
known identities for hyperbolic and trigonometric special functions. We also describe
an intimate connection between the hyperbolic and trigonometric theory, which yields
an expression of the hyperbolic hypergeometric function as an explicit bilinear sum in
trigonometric hypergeometric functions.

1. Introduction

The Gauss hypergeometric function, one of the cornerstones in the theory of classical
univariate special functions, has been generalized in various fundamental directions. A
theory on multivariate root system analogues of the Gauss hypergeometric function, due
to Heckman and Opdam, has emerged, forming the basic tools to solve trigonometric
and hyperbolic quantum many particle systems of Calogero-Moser type and generaliz-
ing the Harish-Chandra theory of spherical functions on Riemannian symmetric spaces
(see [8] and references therein). A further important development has been the gener-
alization to g-special functions, leading to the theory of Macdonald polynomials [16],
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which play a fundamental role in the theory of relativistic analogues of the trigonometric
quantum Calogero-Moser systems (see e.g. [25]) and in harmonic analysis on quantum
compact symmetric spaces (see e.g. [18, 14]). In this paper, we focus on far-reaching
generalizations of the Gauss hypergeometric function within the classes of elliptic,
hyperbolic and trigonometric univariate special functions.

Inspired by results on integrable systems, Ruijsenaars [24] defined gamma functions
of rational, trigonometric, hyperbolic and elliptic type. Correspondingly there are four
types of special function theories, with the rational (resp. trigonometric) theory being the
standard theory on hypergeometric (resp. g-hypergeometric) special functions, while the
hyperbolic theory is well suited to deal with unimodular base g. The theory of elliptic
special functions, initiated by Frenkel and Turaev in [4], is currently in rapid devel-
opment. The starting point of our analysis is the definition of the various generalized
hypergeometric functions as an explicit hypergeometric integral of elliptic, hyperbolic
and trigonometric type depending on seven auxiliary parameters (besides the bases). The
elliptic and hyperbolic analogue of the hypergeometric function are due to Spiridonov
[33], while the trigonometric analogue of the hypergeometric function is essentially an
integral representation of the function @ introduced and studied extensively by Gupta
and Masson in [7]. Under a suitable parameter discretization, the three classes of gener-
alized hypergeometric functions reduce to Rahman’s [20] (trigonometric), Spiridonov’s
[33] (hyperbolic), and Spiridonov’s and Zhedanov’s [35, 33] (elliptic) families of bior-
thogonal rational functions.

Spiridonov [33] gave an elementary derivation of the symmetry of the elliptic hyper-
geometric function with respect to a twisted action of the Weyl group of type E7 on the
parameters using the elliptic analogue [31] of the Nassrallah-Rahman [17] beta integral.
In this paper we follow the same approach to establish the Eg-symmetry (respectively
E7-symmetry) of the trigonometric (respectively hyperbolic) hypergeometric function,
using now the Nassrallah-Rahman beta integral (respectively its hyperbolic analogue
from [37]). The E¢-symmetry of ® has recently been established in [15] by different
methods. Spiridonov [33] also gave elementary derivations of contiguous relations for
the elliptic hypergeometric function using the fundamental addition formula for theta
functions (see (3.6)), entailing a natural elliptic analogue of the Gauss hypergeometric
differential equation. Following the same approach we establish contiguous relations
and generalized Gauss hypergeometric equations for the hyperbolic and trigonomet-
ric hypergeometric function. For & it again leads to simple proofs of various results
from [7].

Although the elliptic hypergeometric function is the most general amongst the gener-
alized hypergeometric functions under consideration (rigorous limits between the differ-
ent classes of special functions have been obtained in the recent paper [23] of the second
author), it is also the most rigid in its class, in the sense that it does not admit natural
degenerations within the class of elliptic special functions itself (there is no preferred
limit point on an elliptic curve). On the other hand, for the hyperbolic and trigonomet-
ric hypergeometric functions various interesting degenerations within their classes are
possible, as we point out in this paper. It leads to many nontrivial identities and results,
some of which are new and some are well known. In any case, it provides new insight in
identities, e.g. as being natural consequences of symmetry breaking in the degeneration
process, and it places many identities and classes of univariate special functions in a
larger framework. For instance, viewing the trigonometric hypergeometric function as
a degeneration of the elliptic hypergeometric function, we show that the breaking of
symmetry (from E7 to E¢) leads to a second important integral representation of &.
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Moreover we show that Ruijsenaars’ [26] relativistic analogue R of the hypergeo-
metric function is a degeneration of the hyperbolic hypergeometric function, and that
the D4-symmetry [28] of R and the four Askey-Wilson second-order difference equa-
tions [26] satisfied by R are direct consequences of the E7-symmetry and the contiguous
relations of the hyperbolic hypergeometric function. Similarly, the Askey-Wilson func-
tion [11] is shown to be a degeneration of the trigonometric hypergeometric function.
In this paper we aim at deriving the symmetries of (degenerate) hyperbolic and trigono-
metric hypergeometric functions directly from appropriate hyperbolic and trigonometric
beta integral evaluations using the above mentioned techniques of Spiridonov [33]. The
rational level, in which case the Wilson function [6] appears as a degeneration, will be
discussed in a subsequent paper of the first author.

We hope that the general framework proposed in this paper will shed light on the fun-
damental, common structures underlying various quantum relativistic Calogero-Moser
systems and various quantum noncompact homogeneous spaces. In the present univariate
setting, degenerations and specializations of the generalized hypergeometric functions
play a key role in solving rank one cases of quantum relativistic integrable Calogero-
Moser systems and in harmonic analysis on various quantum SL; groups. On the ellip-
tic level, the elliptic hypergeometric function provides solutions of particular cases of
van Diejen’s [2] very general quantum relativistic Calogero-Moser systems of elliptic
type (see e.g. [33]), while elliptic biorthogonal rational functions have been identified
with matrix coefficients of the elliptic quantum SL; group in [12]. On the hyperbolic
level, the Ruijsenaars’ R-function solves the rank one case of a quantum relativistic
Calogero-Moser system of hyperbolic type (see [29]) and arises as a matrix coefficient
of the modular double of the quantum SL; group (see [1]). On the trigonometric level,
similar results are known for the Askey-Wilson function, which is a degeneration of the
trigonometric hypergeometric function (see [11] and [10]). For higher rank only partial
results are known, see e.g. [13, 21] (elliptic) and [36] (trigonometric).

The outline of the paper is as follows. In Sect. 2 we discuss the general pattern of sym-
metry breaking when integrals with E7-symmetry are degenerated. In Sect. 3 we intro-
duce Spiridonov’s [33] elliptic hypergeometric function. We shortly recall Spiridonov’s
[33] techniques to derive the E7-symmetry and the contiguous relations for the elliptic
hypergeometric function. In Sect. 4 these techniques are applied for the hyperbolic hyper-
geometric function and its top level degenerations. We show that a reparametrization
of the top level degeneration of the hyperbolic hypergeometric function is Ruijsenaars’
[26] relativistic hypergeometric function R. Key properties of R, such as a new integral
representation, follow from the symmetries and contiguous relations of the hyperbolic
hypergeometric function. In Sect. 5 these techniques are considered on the trigonometric
level. We link the top level degeneration of the trigonometric hypergeometric function to
the Askey-Wilson function. Moreover, we show that the techniques lead to elementary
derivations of series representations and three term recurrence relations of the various
trigonometric integrals. The trigonometric integrals are contour integrals over indented
unit circles in the complex plane, which can be re-expressed as integrals over the real
line with indentations by “unfolding” the trigonometric integral. We show that this pro-
vides a link with Agarwal type integral representations of basic hypergeometric series
(see [5, Chap. 4]). Finally, in Sect. 6 we extend the techniques from [37] to connect the
hyperbolic and trigonometric theory. It leads to an explicit expression of the hyperbolic
hypergeometric function as a bilinear sum of trigonometric hypergeometric functions. In
the top level degeneration, it explicitly relates Ruijsenaars’ relativistic hypergeometric
function to the Askey-Wilson function.
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1.1. Notation. We denote /- for the branch of the square root z > z% on C\ Rg with
positive values on R~ .

2. Weyl Groups and Symmetry Breaking

The root system of type E7 and its parabolic root sub-systems plays an important role
in this article. In this section we describe our specific choice of realization of the root
systems and Weyl groups, and we explain the general pattern of symmetry breaking
which arises from degenerating integrals with Weyl group symmetries.

Degeneration of integrals with Weyl group symmetries in general causes symmetry
breaking since the direction of degeneration in parameter space is not invariant under
the symmetry group. All degenerations we consider are of the following form. For a
basis A of a given irreducible, finite root system R in Euclidean space (V, (-, -)) with
associated Weyl group W we denote

VYA ={veV|{a)>0 Vae A}

for the associated positive Weyl chamber. We will study integrals / (#) meromorphically
depending on a parameter u € G. The parameter space will be some complex hyper-
plane G canonically isomorphic to the complexification V¢ of V, from which it inherits
a W-action. The integrals under consideration will be W-invariant under an associated
twisted W-action. We degenerate such integrals by taking limits in parameter space
along distinguished directions v € V*(A). The resulting degenerate integrals will thus
inherit symmetries with respect to the isotropy subgroup

Wy={oceW | ov=uv},

which is a standard parabolic subgroup of W with respect to the given basis A, generated
by the simple reflections so, @ € A N v (since v € V*(A)).

All symmetry groups we will encounter are parabolic subgroups of the Weyl group
W of type Eg. We use in this article the following explicit realization of the root sys-
tem R(Eg) of type Eg. Let €; be the k™ element of the standard orthonormal basis of
V = R8, with corresponding scalar product denoted by (-, -). We also denote (-, -) for
its complex bilinear extension to C8. We write § = %(61 +e€y+---+€g). Werealize the
root system R(Eg) of type Eg in R® as

8 8
R(Eg) ={v = ZC-/G/ +c¢8 | (v,v) =2, ¢j,ceZand ZCj even}.
j=1 j=1

For later purposes, it is convenient to have explicit notations for the roots in R(Eg). The
rootsare:taj.k(l <j<k< 8),aj_k(1 SJ#FEZ8)Bium(1=j<k<l<m=38),
Eyjx (1 < j <k < 8)and £6, where

+
(x]k = €j+€k,
Ojp = €j — €k,
1
Bjkim = E(Ej tepteteEn — € —€p — € — €),
1
Vik = E(_Gj —€kteteytepteptegteg),

and with (j, k, [, m, n, p, q, r) a permutation of (1, 2, 3,4,5,6,7, 8).
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The canonical action of the associated Weyl group W on C? is determined by the
reflections syu = u — (u, y)y foru € C® and y € R(Eg). Itis convenient to work with

two different choices A, A, of bases for R(E3), namely
N - - = = = = o
A = {(X76, Bi234, Ugss Usq, Oy3, U3y, Ay, ajsts
Ap = {ays, asg, A3y, Uy, B5678, U155 gy, VI8
with corresponding (affine) Dynkin diagrams

. _ = _ _ _ _
-5 g Qy Q3 Q3 Osy Ogs o Ogg
o o -

B1234 2.1

and

-8 Y18 Qg7 Qg PBseis Yys  O3g O3
on -

o, (2.2)
respectively, where the open node corresponds to the simple affine root, which we have
labeled by minus the highest root of R(Eg) with respect to the given basis (which in both
cases is given by § € V*(A})). The reason for considering two different bases is the
following: we will see that degenerating an elliptic hypergeometric integral with W (E7)-
symmetry to the trigonometric level in the direction of the basis element oy € Ay,
respectively the basis element yg € Ay, leads to two essentially different trigonometric
hypergeometric integrals with W (Eg)-symmetry. The two integrals can be easily related
since they arise as a degeneration of the same elliptic hypergeometric integral. This leads
directly to highly nontrivial trigonometric identities, see Sect. 5 for details.

This remark in fact touches on the basic philosophy of this paper: it is the symmetry
breaking in the degeneration of hypergeometric integrals which lead to various nontriv-
ial identities. It forms an explanation why there are so many more nontrivial identities
on the hyperbolic, trigonometric and rational level when compared to the elliptic level.

Returning to the precise description of the relevant symmetry groups, we will mainly
encounter stabilizer subgroups of the isotropy subgroup W_s. Observe that W_s is a
standard parabolic subgroup of W with respect to both bases A j since =6 € VA i)
(j = 1, 2), with associated simple reflections sy, ¢ € A = Al \ {afg}, respectively
Sq» @ € Ay := Ay \ {y18). Hence W_j is isomorphic to the Weyl group of type E7, and
we accordingly write

W(E7) := W_;.
We realize the corresponding standard parabolic root system R(E7) C R(Eg) as
R(E7) = R(Eg) N8+ < 8§+ c RS.
Both Ay and A, form a basis of R(E7), and the associated (affine) Dynkin diagrams are
given by
@y 0y Qg3 05 O Ogg  —Ogg
----0

B1234 (2.3)
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and

Qg7 Qg PBsgrs Oys O3y o3 —fBio7g

I a (2.4)

56
respectively (where we have used that o, respectively Bi27g, is the highest root of
R(E~7) with respect to the basis A1, respectively A;). Note that the root system R(E7)
consists of the roots of the form aj_k and Bxim-
The top level univariate hypergeometric integrals which we will consider in this arti-
cle depend meromorphically on a parameter u € G. with G. C V¢ = C8 (¢ € C) the
complex hyperplane

8
c
gC:58+8L={u=(ul,ug,...,ug)e(C8 | Zuj=2c}.
j=1

The action on C® of the isotropy subgroup W(E7) = W_s C W preserves the hyper-
plane 8+ and fixes 8, hence it canonically acts on G.. We extend it to an action of the
associated affine Weyl group W, (E7) of R(E7) as follows. Denote L for the (W (E7)-
invariant) root lattice L C 8+ of R(E7), defined as the Z-span of all R(E7)-roots. The
affine Weyl group W, (E7) is the semi-direct product group W,(E7) = W(E7) X L.
The action of W(E7) on G, can then be extended to an action of the affine Weyl group
W, (E7) depending on an extra parameter z € C by letting y € L act as the shift

Z

Ty

u=u-—zy, u € Ge.

We suppress the dependence on z whenever its value is implicitly clear from context.
We also use a multiplicative version of the W (E7)-action on G.. Consider the action

of the group C, of order two on C8, with the non-unit element of C, acting by multi-

plication by —1 of each coordinate. We define the parameter space H, for a parameter

ceC*=C\{0}as

8
He={t=(,...,15) € C¥| Htj =%}/ C,.
j=1

Note that this is well defined because if ¢ satisfies [[# = c2, then so does —t. We
sometimes abuse notation by simply writing t = (¢, ..., t3) for the element +¢ in H,
if no confusion can arise.

We view the parameters ¢ € Hexp(c) as the exponential parameters associated to
u € G.. Modding out by the action of the 2-group C» allows us to put a W, (E7)-action
on Hexp(c)» Which is compatible to the W, (E£7)-action on G as defined above. Concretely,
consider the surjective map ¢ : G — Hexp(c) defined by

Ve(u) = £(exp(ur), ..., exp(ug)),  u € Ge.

For u € G. we have wc_l(lpc(u)) = u +2mwiL, where L is the root lattice of R(E7) as
defined above. Since L is W (E7)-invariant, we can now define the action of W, (E7) on
Hexp(c) by o¥c(u) = Ye(ou), o € W, (for any auxiliary parameter z € C).
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Regardless of whether we view the action of the affine Weyl group additively or

multiplicatively, we will use the abbreviated notations sj; = Sa W = S and
J

'C;k = r;j,k throughout the article. Note that s j; (j # k) acts by interchanging the j th and

k™ coordinate. Furthermore, W (E7) is generated by the simple reflections sq (x € A1),
which are the simple permutations s j+1 (j = 1, ..., 6) and w. The multiplicative action
of w on H, is explicitly given by w(Zt) = (st1, st2, 513, sta, s~ 't5, 5 g, s 117, s713),
where s2 = ¢ /titat3ty = tstet7t3/c. Finally, note that the longest element v of the Weyl
group W(E7) acts by multiplication with —1 on the root system R(E7), and hence it

acts by vu = ¢/2 — u on G, and by v(%t) = :I:(c%/tl, ceey C%/l‘g) on H,.

3. The Univariate Elliptic Hypergeometric Function

3.1. The elliptic gamma function. We will use notations which are consistent with [5].
We fix throughout this section two bases p, g € C satisfying |p|, |¢| < 1. The g-shifted
factorial is defined by

(a:q) . =[] —ag’).
=0

We write (aj, C A q),, = HT:l(aj; q) o (aZ.il; q),, = (az,qul; q)oo.etc. as
shorthand notations for products of g-shifted factorials. The renormalized Jacobi theta-
function is defined by

6(a;q) = (a.q/a: q) .
The elliptic gamma function [24], defined by the infinite product
1— Zflpj+1qk+]

o0
Fecpa= 1 —— 57

J.k=0
is a meromorphic function in z € C* = C\ {0} which satisfies the difference equation
Te(qz; p,q) = 6(z; p)Te(z; p. q), (3.D

satisfies the reflection equation

Le(zi p.q) =1/Te(pq/z: p, ),
and is symmetric in p and ¢,

Ie(z; p,q) =Te(z; q, p).

For products of theta-functions and elliptic gamma functions we use the same shorthand
notations as for the g-shifted factorial, e.g.

m
Ce(ay,...,am; p,q) = H Ceaj; p,q).
j=1
In this section we call a sequence of points a downward (respectively upward)
sequence of points if it is of the form ap’g* (respectively ap=/g=*) with j, k € Z>q
for some a € C. Observe that the elliptic gamma function ', (az; p, q), considered as a
meromorphic function in z, has poles at the upward sequence a~' p~/qg ™ (j, k € Z=0)
of points and has zeros at the downward sequence a ! p/*1¢g**! (j, k Z>p) of points.
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3.2. Symmetries of the elliptic hypergeometric function. The fundamental starting point
of our investigations is Spiridonov’s [31] elliptic analogue of the classical beta integral,

= [I retup.a G2

6
(@; Doo(p: p)oo/Hj_lre(thil;PvQ) dz
2 ¢ 1<j<k=<6

Lz p,q)  2miz

for generic parameters ¢ € CO satisfying the balancing condition H?:l tj = pq, where
the contour C is chosen as a deformation of the positively oriented unit circle T sep-
arating the downward sequences ¢; pZZquZ" (j =1,...,6) of poles of the integrand
from the upward sequences tj_1 pl=ogZ=0 (j = 1,...,6). Note here that the factor
1/, (zﬂ; p,q) of the integrand is analytic on C*. Moreover, observe that we can
take the positively oriented unit circle T as contour if the parameters satisfy [¢;] < 1
(j =1,...,6). Several elementary proofs of (3.2) are now known, see e.g. [31,32 and
21].

We define the integrand I, (¢; z) = 1.(¢; z; p, q) for the univariate elliptic hypergeo-
metric function as

[T=i Tettjz*s p. g)
Te(z%% p,q)

I.(t;z; p.q) =

where t = (t1,t2,...,13) € ((Cx)g. For parameters 1 € C?® with H?’:l tj = p2q?
and #;t; ¢ pl=ogZ=0 for 1 < i, j < 8 (possibly equal), we can define the elliptic
hypergeometric function S, (¢) = S.(¢; p, q) by

dz

2miz’

Se(t; p.q) = /C L(t;2; p,q)

where the contour C is a deformation of T which separates the downward sequences
tj pZZOqZZ‘) (j=1,...,8)of poles of I,(¢; -) from the upward sequences tj_l piOqZSO
(j =1,..., 8).If the parameters satisfy |z;| < 1 this contour can again be taken as the
positively oriented unit circle T.

The elliptic hypergeometric function S, extends uniquely to a meromorphic function
on{reC8: [1t = p%g?}. In fact, for a particular value 7 of the parameters for which
the integral is not defined, we first deform for ¢ in a small open neighborhood of 7 the
contour C to include those upward poles which collide at ¢+ = v with downward poles.
The resulting expression is an integral which is analytic at an open neighborhood of t
plus a sum of residues depending meromorphically on the parameters ¢. This expression
yields the desired meromorphic extension of S, (¢) at t. For further detailed analysis of
meromorphic dependencies of integrals like S,, see e.g. [26 and 21].

Since I.(t; —z) = I,(—t; z), where —t = (—t1, ..., —13), we have S.(t) = S.(—1),
hence we can and will view S, as a meromorphic function S, : H,, — C. Further-
more, S,(¢) is the special case I1 éc of Rains’ [21] multivariate elliptic hypergeometric
integrals 11 gc’ and it coincides with Spiridonov’s [33, §5] elliptic analogue V (-) of the
Gauss hypergeometric function.

Remark 3.1. Note that S.(t; p, g) reduces to the elliptic beta integral (3.2) when e.g.
fits = pq. More generally, for e.g. 115 = p"*'¢"™*' (m,n € Z>p) it follows from [34,
Thm. 11] that S.(¢; p, q) essentially coincides with the two-index elliptic biorthogonal
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rational function R,,, of Spiridonov [34, App. A], which is the product of two very-
well-poised terminating elliptic hypergeometric 12V1; series (the second one with the
role of the bases p and g reversed).

Next we determine the explicit W (E7)-symmetries of S,(¢) in terms of the W (E7)
action on t € Hp, from Sect. 2. This result was previously obtained by Rains [21] and
by Spiridonov [33]. We give here a proof which is similar to Spiridonov’s [33, §5] proof.

Theorem 3.2. The elliptic hypergeometric function S.(t) (t € Hpy) is invariant under
permutations of (11, . . ., t3) and it satisfies

Se(t: p.q) = Se(wt: p.q) || Tejtip.a) [] Tetjtcip.q) (33)
1<j<k<4 5<j<k<8

as meromorphic functions int € H,y, where (recall) w = sg,,,,.

Proof. The permutation symmetry is trivial. To prove (3.3) we first prove it for param-
eters t € C? satisfying H?‘:l tj = p?q? and satisfying the additional restraints |¢ il <1
G=1....8,lt > |pq|% (j=5,...,8and |H§:5tj| < |pq| (which defines a
non-empty open subset of parameters of {t € C| H8~:1 tj = p*q?) since |pl, |g| < 1).
For these special values of the parameters we consider the double integral

1)1 Te(tjz®s p @) Te(sx 2% p @) [Tios Teltys ™ xF i pog) dz  dx
e Le(z¥2,x%2; p, q) 2miz 2mix’

where s is chosen to balance both the z as the x integral, so s? H;*:l tji = pq =

572 H?:s tj. By the additional parameter restraints we have |s| < 1 and |¢;/s| < 1 for
j =5,...,8, hence the integration contour T separates the downward pole sequences
of the integrand from the upward ones for both integration variables. Using the elliptic
beta integral (3.2) to integrate this double integral either first over the variable z, or first
over the variable x, now yields (3.3). Analytic continuation then implies the identity
(3.3) as meromorphic functions on H,,. O

An interesting equation for S, (¢) arises from Theorem 3.2 by considering the action
of the longest element v of W (E7), using its decomposition

U = $45536548537534512WS37S48 WS35S46W (3.4)
as products of permutations and w.

Corollary 3.3. We have

Se(t: p.q) = Set: p.q)  [] Teltjtii p.q) 3.5)
1<j<k<8

as meromorphic functions int € H,q.

Remark 3.4. Corollary 3.3 is the special case n = m = 1 of [21, Thm. 3.1], see also [33,
§5, (iii)] for a proof close to our present derivation.
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3.3. Contiguous relations. For sake of completeness we recall here Spiridonov’s [33, §6]
derivation of certain contiguous relations cq. difference equations for the elliptic hyper-
geometric function S, (¢) (most notably, Spiridonov’s elliptic hypergeometric equation).
The starting point is the fundamental theta function identity [5, Exercise 2.16],

1 1 1
;9(uxi1,yzi1;p>+-;e(uyil,zxil;p>+-;9<uzi1,xyi1;p)::o, (3.6)

which holds for arbitrary u, x, y, z € C*. For the W, (E7)-action on Hp, we take in

Z1
this subsection 7;; = 7;; og(9)

the g-difference operators ;; are already well defined on {r € C8| H it = = p*q?).
Using the difference equation (3.1) of the elliptic gamma functlon and using (3.6),
we have

, which multiplies #; by ¢ and divides ¢; by ¢. Note that

9w*ww,p)
6(t6t7 7 )

where (f5 <> t7) means the same term with ¢ and #7 interchanged. For generic ¢ € C3
with H?:l tj = p*g® we integrate this equality over z € C, with C a deformation of T
which separates the upward and downward pole sequences of all three integrands at the
same time. We obtain

0(qg~ 158575 p)
O(tet5™"; p)

as meromorphic functions in ¢ € H . This equation is also the n = 1 instance of [22,
Thm. 3.1]. Note that in both terms on the left-hand side the same parameter g is divided
by ¢, while two different parameters (#¢ and #7) are multiplied by ¢g. We can obtain a
different equation (i.e. not obtainable by applying an Sg symmetry to (3.7)) by substi-
tuting the parameters vt in (3.7), where v € W(E7) is the longest Weyl group element,
and by using (3.5). The crux is that tggvs = vtget. We obtain

I (te8t; 2) + (t6 <> t7) = L(t; 2),

Se(Tegt) + (16 <> 17) = Se(2) (3.7

0(t7/qt8; p)

) H‘)(f/ta/q P)Se(Ts6t) + (t6 <> 17) = He(tjtg PS(t)  (3.8)

j=1
for t € H,,. We arrive at Spiridonov’s [33, §6] elliptic hypergeometric equation for
Se(t).
Theorem 3.5. ([31]) We have
A(1)Se (18785 p, q) + (t7 < 13) = B(1) S (5 p, q) (3.9)

as meromorphic functions int € 'Hp,, where A and B are defined by

6
At = e,
“= f89(t7/qtg,tg/t7 P) l;[ tj11/4; p)

0(1718/q; p) 0(16/13, t618; P)
B(t) = 0(tjte; p)— 0(tjt7/q; p)
160(17/qt6, 18/q16; P) 11;[1 / 160(t7/qt6, t7/q13, 13/17; P) H /

5
B 0(tg/17, t617; P) H 0t it3/q: p)
t60(17/18. 18/qte. 18/q17: ) -} e
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Remark 3.6. Note that B has an Sg-symmetry in (71, 2, ..., t¢) even though it is not
directly apparent from its explicit representation.

Proof. This follows by taking an appropriate combination of three contiguous relations
for S, (). Specifically, the three contiguous relations are (3.7) and (3.8) with #5 and g
interchanged, and (3.7) with #7 and #g interchanged. O

By combining contiguous relations for S, (#) and exploring the W (E7)-symmetry of
S (), one can obtain various other contiguous relations involving Se(tx?), Se(tyt), and
Se(t;t) for suitable root lattice vectors x, y, z € L. A detailed analysis of such proce-
dures is undertaken for three term transformation formulas on the trigonometric setting
by Lievens and Van der Jeugt [15] (see also Sect. 5).

Remark 3.7. Interchanging the role of the bases p and ¢ and using the symmetry of
S.(t; p,q) in p and ¢, we obtain contiguous relations for S.(¢; p, g) with respect to
multiplicative p-shifts in the parameters.

4. Hyperbolic Hypergeometric Integrals

4.1. The hyperbolic gamma function. We fix throughout this section w1, wy € C satis-
fying N(w1), N(wy) > 0, and we write
w1 + w2
2
Ruijsenaars’ [24] hyperbolic gamma function is defined by

G ) ./OO sin(2zt) z dt
s W1, =eX - - - -
“ e e P! 0 2 sinh(w;t) sinh(wsyt) wjwyt ) t

for z € C satisfying |J(z)| < N(w). There exists a unique meromorphic extension of
G (w1, 2; 2) to z € C satisfying

w =

G(z; w1, ) = G(z; w2, w1),
Gz w1, ) = G(—z 01, 0) ', 4.1
Gzt+io; o, w;) = —2is((z+iw)/w)G(z; wy, @2),
where we use the shorthand notation s(z) = sinh(;rz). The second equation here is
called the reflection equation. In this section we will omit the w;, w; dependence of G
if no confusion is possible, and we formulate all results only with respect to i w; -shifts.

We use similar notations for products of hyperbolic gamma functions as for g-shifted
factorials and elliptic gamma functions, e.g.

n
GQivon o1, ) = [ | Gzji o1, 02).
j=1

The hyperbolic gamma function G is a degeneration of the elliptic gamma function
e,

6irwiwy
=Gz —iw; wy,w) 4.2)

for w1, wy > 0, see [24, Prop. I11.12].

. : m(z —iw)
11\r‘r(1) I, (exp(2mrz); exp(—2mwir), exp(—2na)2r)) exp| —
,
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In this section we call a sequence of points a downward (respectively upward)
sequence of points if it is of the form a + iZ<ow; + i Z<owa (respectively a +iZ>ow1 +
iZsowy) for some a € C. Recall from [24] that the hyperbolic gamma function
G (w1, w2; 7), viewed as a meromorphic function in z € C, has poles at the down-
ward sequence —iw +iZ<ow +iZ<ow, of points and has zeros at the upward sequence

iw+iZsow1 +iZsowy of points. The pole of G(z; w1, w2) at z = —iw is simple and
i
Res (G(z; w1, a)z)) = —Joiw;. 4.3)
7=—iw 2

All contours in this section will be chosen as deformations of the real line R separating
the upward pole sequences of the integrand from the downward ones.

We will also need to know the asymptotic behavior of G(z) as %(z) — Foo (uni-
formly for J(z) in compacta of R). For our purposes it is sufficient to know that for any
a,b € C we have

G(z —a; w1, ) exp( miz (b — a)) = exp (2 dl b* — az)) , (4.4)

1m
N(z)—oo G(z — b; wy, wy) 1wy w1w)

where the corresponding o(M(z))-tail as NR(z) — oo can be estimated uniformly for
J(z) in compacta of R, and that for periods satisfying wjw2 € R,

|G+ x; w1, w2)] < M exp (ng(a)]ua)z)'x')’ Vx eR 4.5)

for some constant M > 0, provided that the line u + R does not hit a pole of G. See [26,
App. A] for details and for more precise asymptotic estimates.

4.2. Symmetries of the hyperbolic hypergeometric function. The univariate hyperbolic
beta integral [37, (1.10)] is

G(iw £ 2z; w1, w) .
/C HQ L% dz=2/wiw) H Gliw—uj —ug; oy, w) (4.6)
J

—1Guj £z 01, ) 1<j<k<6

for generic uy, .. ., ug € C satisfying the additive balancing condition Z?Zl u; =4io.
Note that this integral converges since the asymptotic behaviour of the integrand at
7z = oo is O(exp(—4r|z|w/wiw,)) in view of the reflection equation (4.1), the limit
(4.4) and the fact that ‘R(ﬁ) > 0 due to the imposed conditions %(w;) > 0 on the
periods w; (j =1, 2).

We define now the integrand of the hyperbolic hypergeometric function Iy, (u; z) =
In(u; z; w1, ) as

Glw=x2z; w1, wy)
[T} Guj £ z: 01, 02)

In(u; z; 01, w2) =

for parameters u € C8. The hyperbolic hypergeometric function S, () = Sy, (u; w1, @2)
is defined by

Sp(u; w1, w2) =/1h(bt: Z; 1, w2)dz
C
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for generic parameters u € Gy;,, (see Sect. 2 for the definition of Gy;,,). The asymptotic
behaviour of I (u; z) at z = oo is again O(exp(—4r|zlw/wiw?)), so the integral
absolutely converges. It follows from (4.3) and the analytic difference equations for the
hyperbolic gamma function that S, (#) has a unique meromorphic extension tou € Gaj,
cf. the analysis for the elliptic hypergeometric function S, (#). We thus can and will view
Sy (u) as a meromorphic function in u € Gy;,,. Note furthermore that the real line can
be chosen as an integration contour in the definition of Sj,(u) if u € Gy;, satisfies
S(uj —iw) < 0 for all j. The hyperbolic hypergeometric function Sy (1) (4 € Griw)
coincides with Spiridonov’s [33, §5] hyperbolic analogue s(-) of the Gauss hypergeo-
metric function.

Using (4.2) and the reflection equation of G, we can obtain the hyperbolic hypergeo-
metric function Sy, (vu; w1, w2) = Sp(iw — uy, ..., iw — ug; w, w2) (U € Gyiy) for-
mally as the degeneration r |, 0 of the elliptic hypergeometric function S, (¢; p, g) with
p =exp(—2mwr), q = exp(—2mwwor) and t = Y;, 2miru) € Hexp(—dnrw) = Hpq-
This degeneration, which turns out to preserve the W (E7)-symmetry (see below), can
be proven rigorously, see [23]. This entails in particular a derivation of the hyperbolic
beta integral (4.6) as a rigorous degeneration of the elliptic beta integral (3.2) (see [37,
§5.4] for the formal analysis).

Next we give the explicit W (E7) symmetries of Sy, (1) in terms of the W (E7) action
onu € Gy, from Sect. 2.

Theorem 4.1. The hyperbolic hypergeometric function Sp(u) (u € Gj,) is invariant
under permutations of (u1, ..., ug) and it satisfies

Sh(u; o1, @) = S(ww; 01, 0) [ Glio—uj — w01, )
1<j<k=<4
X H Gliw—uj—ug; w1, w)
5<j<k<8
as meromorphic functions in u € Gyj,,.

Proof. The proof is analogous to the proof in the elliptic case (Theorem 3.2). For the
w-symmetry we consider for suitable u € Gy;,, the double integral

Gliw=x2z,iw=+2x)

4 K 3 dzdx
R2 szl Guj+2)Gliw+stx+2)[[_s Glux —s £ x)

with s = iw — %(ul +uy+u3z+uy) = —iw+ %(u5 + ue + u7 + ug). We impose the
conditions J(s) < 0 and

Suj—iw) <0 (G=1,....,4), S —io) <) *k=5...,8 @7

on u € G, to ensure that the upward and downward pole sequences of the integrand
of the double integral are separated by R. Next we show that the parameter restraints

—H(—2) <3(——) <0 4.8)

w12 w1w?2

on u € Gy, suffice to ensure absolute convergence of the double integral. Using the
reflection equation and asymptotics (4.5) of G we obtain the estimate

! <M 2 “(Hiw)(l +x|+lz—x|)). Y(x.2)eR?
exp | —27 3% X —Xx , X,
|IGiw+stx+2z2)| — P wiw) ¢ ¢ ¢
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for some constant M > 0. It follows that the factor G (iw+s £ x +2) ! of the integrand
is absolutely and uniformly bounded if ?s((ia) +5)/wiwy) > 0, ie. if J?s(s/ana)z) >
—ﬂ%(a)/a)la)g). The asymptotic behaviour of the remaining factors of the integrand
(which breaks up in factors only depending on x or on z) can easily be determined
by (4.5), leading finally to the parameter restraints (4.8) for the absolute convergence of
the double integral.

Itis easy to verify that the parameter subset of G»;, defined by the additional restraints
J(s) < 0, (4.7) and (4.8) is non-empty (by e.g. constructing parameters u € G;,, with
small associated balancing parameter s). Using Fubini’s Theorem and the hyperbolic
beta integral (4.6), we now reduce the double integral to a single integral by either
evaluating the integral over x, or by evaluating the integral over z. Using furthermore
that

wu = (U1 +s,up+s,u3+Ss,uqs+S,us — S, U — S, U7 — S, Ug —S)

for u € Gy, it follows that the resulting identity is the desired w-symmetry of S, for
the restricted parameter domain. Analytic continuation now completes the proof. O

The symmetry of S,(u) (u € Gai) with respect to the action of the longest Weyl
group element v € W (E7) is as follows.

Corollary 4.2. The hyperbolic hypergeometric function Sy, satisfies
Sn(u; w1, w2) = Sp(vu; wy, 3) H Gliw—uj—u; o, w) 4.9)
1<j<k<8
as meromorphic functions in u € Gj.

Proof. This follows from Theorem 4.1 and (3.4). O

4.3. Contiguous relations. Contiguous relations for the hyperbolic hypergeometric func-
tion S, can be derived in nearly exactly the same manner as we did for the elliptic hyper-
geometric function S, (see Sect. 3.3 and [33, §6]). We therefore only indicate the main
steps. Using the p = 0 case of (3.6) we have

sxExv)s(yxz)+sxEy)sztv)+s(x£2)s(vxy) =0,

where s(x £ v) = s(x + v)s(x — v). In this subsection we write 7 = tjf‘ 1=<j#
k < 8), which acts on u € G;, by subtracting iw; from u; and adding iw to u;. We
now obtain in analogy to the elliptic case the difference equation

s(ug+iow £ (u7 —iw))/w2)

S((te — i £ (7 = iw))/wz)sh(fﬁsu) + (ug <> u7) = Sp(u)

as meromorphic functions in u € Gy;,,. Using (4.9) we subsequently obtain

s((u7 —ug +2iw)/w>)
s((u7 — ug)/w2)

5
H s((uj +ue)/w2)Sh(tseut) + (g <> u7)
j=1

5
= Hs((uj +ug — 2iw) /@) Sp(u)
j=1
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as meromorphic functions in u € G;,. Combining these contiguous relations and
simplifying we obtain

A(u)Sp(tg7u) — (u7 < ug) = Bw)Sp(u),  u € Griw, (4.10)

where

6
A(u) = s(Qiw — u7 +ug)/w2) H s((uj+u7)/w),
j=1
s((ug £u7)/w2)s(2iw +ug — u7)/w2)s(2iw — ug +uy)/ws)
s(Qiw+ug — ue)/@2)s((Liw +u7 — ug)/wy)

B(u) =

5
X H s((=2iw+uj+ug)/wz)
j=1
_ S(Qiw —ug +u7)/w2)s((u7 — ue)/w2)s((=2iw + ue +uz)/w2)
S(Qiw + ug — ug)/w2)

5
x [T s +us)/wn)
j=1
+S((Ziw +ug —u7)/@)s((ug — ue)/w2)s((—2iw + ug + ug)/wz)
S(QRiw+u7 — ug)/wy)

5
X H s((uj +u7)/wy).

j=1
This leads to the following theorem.
Theorem 4.3. We have
A(u)(Sp(tg7u) — Sp(u)) — (u7 <> ug) = Ba(u)Sp(u) (4.11)

as meromorphic functions in u € G»j,, where A(u) is as above and with By (u) defined
by

s((u7 £ug)/w2)s((u7 — ug = 2iw)/wz)

4
8 6

< [ D sQlw+uj)jw) =D s@lio—uj)/wm) | . (4.12)

j=1 j=1

By(u) =

Proof. 1t follows from (4.10) that (4.11) holds with B> (1) = B(u) — A(u) — A(s73u).
The alternative expression (4.12) for B, was obtained by Mathematica. Observe though
that part of the zero locus of By (1) (u € Gai) can be predicted in advance. Indeed, the
left-hand side of (4.11) vanishes if u7 = ug (both terms then cancel each other), and it
vanishes if #u7 = ug & iw (one term vanishes due to an s-factor, while the other term
vanishes since either Sy (tg7u) = Sp(u) or Sy(t73u) = Sy (u)). The zero of By (u) at
u7 = —ug can be predicted from the fact that all hyperbolic hypergeometric functions
Sy in (4.11) can be evaluated for u7 = —ug using the hyperbolic beta integral (4.6). O
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4.4. The degeneration to the hyperbolic Barnes integral. Inthis subsection we degenerate
the hyperbolic hypergeometric function Sy (1) (¢ € Ga;,) along the highest root 81278

of R(E7) with respect to the basis Ay of R(E7) (see (2.4) for the associated Dynkin

diagram). The resulting degenerate integral By, (1) thus inherits symmetries with respect

to the standard maximal parabolic subgroup

WZ(DG) = W(E7)ﬁ127g C W(E7)7

which is isomorphic to the Weyl group of type Dg and is generated by the simple reflec-
tions sy (@ € Az \ {@y3}). The corresponding Dynkin diagram is

gy g Bsgrg Oy U3y O3
----0

%56
Concretely, for generic parameters u € Go;,, we define By, (u) = Bp(u; w1, w2) by

6. Gz — uj; 01, )
Bh(u;wl,w2)=2/ /= ! dz.
C Hj:1,2,7,8 G(z+uj; wr, )

This integral converges absolutely since the asymptotic behaviour of the integrand at
7 = Foo is exp(—4rw|z|/wiw2). We may take the real line as integration contour
if u € Gy satisfies I(u; — iw) < O for all j. Observe that the integral By (u) has
a unique meromorphic extension to u € Gp;,. We call Bj(u) the hyperbolic Barnes
integral since it is essentially Ruijsenaars’ [26] hyperbolic generalization of the Barnes
integral representation of the Gauss hypergeometric function, see Subsect. 4.6.

Remark 4.4. The parameter space of the hyperbolic Barnes integral By, is in fact the
quotient space Gy;,,/CB1278. Indeed, for & € C we have

B (u +&B1278) = B (u)

as meromorphic functions in # € Gy;4, which follows by an easy application of (4.4)
and Cauchy’s Theorem.

Proposition 4.5. For u € Gy, satisfying I(u; —iw) <0(j =1,...,8) we have

6

Tim Sy (u — rrors) exp (222) exp (2;’1;,2 (> -3 ui)) = By(w).
j=1,2,7,8 j=3
Proof. The conditions on the parameters u € G»;,, allow us to choose the real line as an
integration contour in the integral expression of Sy (u — rB1273) (r € R) as well as in
the integral expression of By (u). Using that the integrand I, (u; z) of Sp,(u) is even in
x, using the reflection equation for the hyperbolic gamma function, and by a change of
integration variable, we have

2nrw 2nrw

Gliwx?2
Sp(u — rPiarg)e1®2 = e“12 (o 22)

o0
/ r 6 r dz
—00 Hj=1,2,7,8 Guj—5=*2) Hj=3 Guj+z+2)
2nrw oo G ] :l: 2
= 2e®192 / flw Z)6 . dz
0 Hj=1,2,7,8 Guj—3+2) Hj:3 Guj+z+2)

= 2/ ki1(2z +r)ky(z +r)L(2)dz,

_r
2
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where

[15-5GG —u))

L(z) = ,
Hj=1,2,7‘8 G(z+uy)
G(z+iw) _2rwz _ _
M@ = Go gy 7 = (=T (1 - ),
L G(Z —Uu ) drwz
k() = H,_1,2,7,8 P e

H?:3 G(z+ uj)

Here the second expression of k1 follows from the analytic difference equations satisfied
by G. The pointwise limits of k; and k; are

i 6 2 2
lim k() =1 lim ka(z) = eien 2= G 2jm127815),
Z—> 00 Z—> 00

Moreover, observe that k1 (z) is uniformly bounded for z € R>¢ by 4, and that k2(z),
being a continuous function on R with finite limit at infinity, is also uniformly bounded
for z € R>op.

Denote by x(—r/2,00)(z) the indicator function of the interval (—r/2, 0c0). By Lebes-
gue’s theorem of dominated convergence we now conclude that

2nrw S
lim Sp(u —rBiz78)e®®2 =2 lim / k1 2z +r)ka(z +r)L(z)dz
r—00 r—o00 _%

o
= 2/ lim X(—r/2,00)(2)k1(2z + $)ky(z +s)L(2)dz
e T 00

i 6 o
- 2em(Z/=3“§—Z/=L2-7«8”§)/ L(z)dz

—00

i

6 ol >
— plojep (Zj=3 U2 =128 u-’)Bh(M),

as desired. O
In the following corollary we use Proposition 4.5 to degenerate the hyperbolic beta

integral (4.6). The resulting integral evaluation formula is an hyperbolic analogue of the
nonterminating Saalschiitz formula [5, (2.10.12)], see Subsect. 5.4.

Corollary 4.6. For generic u € C satisfying Z?:l u; = 4iw we have

36
= oo [[[]Gliw—u; —w). 4.13)

/ G(z—u4,z—u5,z—u6)d
¢ j=1k=4

G(z+ui,z+un, 2+u3)

Proof. Substitute the parameters u’ = (u1, uz, us, us, ug, 0, u3, 0) in Proposition 4.5
with u; € C satisfying S(u; — iw) < 0 and Z?:l uj = 4iw. Then B;,(u') is the left-
hand side of (4.13), multiplied by 2. On the other hand, by Proposition 4.5 and (4.6) we
have
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w1w)

. 3 6
2nrw i
N1 r 2 _ 2
B = rl_l)n;o Sn(u” — rB1278) exp + 210 (Z; uj Z;L”J)
j j=

3 6
zzmHHG(iw—u,-—uk)

j=1k=4
11 Glw—u; —ug+r) 2 ; 3 6
x lim ~=I<k=3 SRR L |
r—o00 []y<; Gui+ur —iw+r) P wwy 2wiw J J
4<j<k<6 JjTuk 12 192\ 55 —4

3 6
=2ymo; [[[] Gliw—uj —w).

j=1k=4
where the last equality follows from a straightforward but tedious computation using
(4.4). The result for arbitrary generic parameters u € C® satisfying Z?zl uj = 4io
now follows by analytic continuation. 0O

Next we determine the explicit W>(Dg)-symmetries of By, (u).

Proposition 4.7. The hyperbolic Barnes integral By, (u) (u € Qi) is invariant under
permutations of (uy, uz, u7, ug) and of (usz, ua, us, ue) and it satisfies

By(w) = Bywu) [ [] Gliw—uj—uo) [] [] Gliw—u; —w) 4.14)

j=1,2k=34 j=5.6k=1,8
as meromorphic functions in u € Gj.
Proof. The permutation symmetry is trivial. The symmetry (4.14) can be proven by

degenerating the corresponding symmetry of Sy, see Theorem 4.1. We prove here the
w-symmetry by considering the double integral

/ G(z—u3,2—u4,x —us+s,x —ug+s,72—x —iw—=s) J
: zdx
R2 G(z+uy,z+up, x+u7—s,x+ug—s,z2—x+iw+s)
withs = iw — %(ul +uy+uz+ug) = —iw+ %(us + ug + uy + ug), where we impose
on u € Gy;,, the additional conditions
w K w
—SR( ) < S( ) < ‘R( ) 4.15)
w12 w12 w12

to ensure the absolute convergence of the double integral (this condition is milder than
the corresponding condition (4.8) for Sy, due to the missing factors G (iw £2z, iw % 2x)
in the numerator of the integrand), and the conditions (4.7) to ensure that the upward and
downward pole sequences are separated by R. Using Fubini’s Theorem and the hyper-
bolic Saalschiitz summation (4.13), similarly as in the proof of Theorem 4.1, yields
4.14). O
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4.5. The degeneration to the hyperbolic Euler integral. In this subsection we degenerate
the hyperbolic hypergeometric function Sy, (1) (4 € Ga;() along the highest root o7 of
R(E7) with respect to the basis A of R(E7) (see (2.3) for the associated Dynkin dia-
gram). The resulting degenerate integral £y, (#) thus inherits symmetries with respect to
the standard maximal parabolic subgroup

Wi(De) := W(E7),, C W(E7),

which is isomorphic to the Weyl group of type Dg and is generated by the simple reflec-
tions s, (o € Ay \ {a74}). The corresponding Dynkin diagram is

@y Q3 Oy K5y OQgs Qg

I B1234

By the conditions %(w;) > 0 on the periods w; (j = 1,2) we have that % (=2-) > 0.

ww
For generic parameters u = (uq, ..., ue) € (o] satisfying
6
1 2w
3 i) >N 4.16
oo 2 uj) > R(-) (4.16)

j=1

we now define Ej,(u) = Ep(u; w1, w2) by

G(iw+£2z; w1, w)

Ep(u; o1, w3) =/ 3 dz.
¢[lj=1 Guj £z 01, w2)

It follows from the asymptotics (4.4) of the hyperbolic gamma function that the condition
(4.16) on the parameters ensures the absolute convergence of £}, (u). Furthermore, Ej, (1)
admits a unique meromorphic continuation to parameters u € C° satisfying (4.16) (in
fact, it will be shown later that Ej, (1) has a unique meromorphic continuation to u € C%
by relating Ej, to the hyperbolic Barnes integral Bj). Observe furthermore that Ej, (1)
reduces to the hyperbolic beta integral (4.6) when the parameters u € C satisfy the
balancing condition 23=1 u;j = 4iw. We call Ej (u) the hyperbolic Euler integral since
its trigonometric analogue is a natural generalization of the Euler integral representation
of the Gauss hypergeometric function, see Subsect. 5.4 and [5, §6.3].

Proposition 4.8. For u € Gy, satisfying I(uj — iw) < 0 (j = 1,...,8), I((u7 +
ug)/wlwg) > 0 and (4.16), we have

i
lim Sp,(u — raqg) exp (— (w7 +ug)(2r —u7 + MS)) =Ep(uy, uz, uz, ug, us, ug).
r—00 w1 w2
“4.17)
Remark 4.9. Proposition 4.8 is trivial when u7 = —ug due to the reflection equation for

G. The resulting limit is the hyperbolic beta integral (4.6) (since the balancing condition

reduces to Z?:l uj =4iw).
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Proof. The assumptions on the parameters ensure that the integration contours in S, and

E}, can be chosen as the real line. We denote the integrand of the Euler integral by
G@{w=+2z)
J@) = —p
1= Gl +2)

and we set

G(z +ug) w1

H = S5 (— T (g +u8)) .

This allows us to write

o +ug)) = JQHr+2)H(r —2),

In(u — rogg; ) exp (—
wiw?

where (recall) I (u; z) is the integrand of the hyperbolic hypergeometric function Sy, ().
Observe that H is a continuous function on R satisfying

lim H(z) = exp (
700 2w

1
27iz i
(u7 + u8>) = exp (—(u% -~ u%))
) 2wi1w2

lim H(z)exp (
z—>—00 w]

by (4.4) and by the reflection equation for the hyperbolic gamma function. Moreover,
H is uniformly bounded on R in view of the parameter condition S(u7 +ug/ a)la)z) >0
on the parameters, and we have

lim H(r+2)H(r —2) = exp( k- u%))
for fixed z € R.

By Lebesgue’s theorem of dominated convergence we conclude that

-
lim Sy(u — rogy) exp( lr(u7+u8))= lim / J@QH( +)H(r — 2)dz
r—00 wlw2 r—oo Jp
:/ J(z) im Hr+z2)H(r — z)dz
R r—0oQ

Tl
2_ 2
(ug —uz) |,
g U7

=Ep(uy, ...,uﬁ)exp(
w

as desired. 0O

As a corollary of Proposition 4.8 we obtain the hyperbolic beta integral of Askey-
Wilson type, initially independently proved in [29] and in [37].

Corollary 4.10. For generic u = (uy, ua, u3, uq) € ct satisfying ?v( 1 Z‘}-:] uj) >

wiw)
N ( wzl‘:’uz ) we have

Gliw=x2
/ (o 2) dz =2 /wiwr G(uy +ur + u3 + ug — 3iw)
¢ [T} Gluj £2)

[ Glw—u;—up. (4.18)

1<j<k<4
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Proof. Apply Proposition 4.8 under the additional condition us = —ug on the associated
parameters u € Gaj,. Using the reflection equation for the hyperbolic gamma function
we see that the right-hand side of (4.17) becomes the hyperbolic Askey-Wilson integral.
On the other hand, Sj, (4 — ra-g) can be evaluated by the hyperbolic beta integral (4.6),
resulting in

/ HG(Za):i:ZZ) Zzsz(iw_b”_uS) H G(ia)—uj—uk)

1Guj+2) 1<j<k<4

x lim exp (— T w7+ ug)(2r — un + ug))
w)

r—00

4 .
Xl—[ G(iw—uj—uz+r)
_ G(—iw+uj+ug+r)

=2Jwiwy G(uy + uy + uz+ug — 3iw) H Glw—uj—uy),
1<j<k=<4

where we used the balancing condition on u and the asymptotics (4.4) of the hyperbolic
gamma function to obtain the last equality. The additional parameter restrictions which
we have imposed in order to be able to apply Proposition 4.8 can now be removed by
analytic continuation. O

Since both the Euler and Barnes integrals are limits of the hyperbolic hypergeometric
function we can connect them according to the following theorem.

Theorem 4.11. We have

By(u) = Ep(up —s,u7 —s,ug — s, u3+5,us+s,us+s)

5
x [[Glw—ur—uj) [] Gliw—us—up (4.19)

j=3 j=2.7.8

as meromorphic functions in {u € Goj, | ‘Qs((ul + uﬁ)/a)la)z) < i)i(Zw/wlwz)}, where

1 1
s=§(u2+u6+u7+u3)—ia)=iw—§(u1+u3+u4+u5).

Proof. This theorem can be proved by degenerating a suitable E7-symmetry of S, using
Proposition 4.5 and Proposition 4.8. We prove the theorem here directly by analyzing
the double integral

Gliow+22) [T}=3 G(x — uy)

dzd
N /]R2 G(ia)+s+x:I:z)G(x+u1)Hj:2,7,8G(uj —s+2) ax

for N(w1), R(w2) > 0, u € Gyj, and s = %(uz +ug + u7 + ug) — iw, where we impose
the additional parameter restraints wjws € R. ¢ and

I13(9)| < R(w), S(ug+s) <0
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to ensure absolute convergence of the double integral (which follows from a straight-
forward analysis of the integrand using (4.4) and (4.5), cf. the proof of Theorem 4.1),
and

S(s) <0, Siw—u;)>0 (j=1,3,4,5), Sw—ur+s)>0 (k=2,7,8)

to ensure pole sequence separation by the integration contours. Note that these parameter
restraints imply the parameter condition J(u1 +ue) < 29 (w) needed for the hyperbolic
Euler integral in the right-hand side of (4.19) to be defined. Integrating the double inte-
gral first over x and using the integral evaluation formula (4.13) of Barnes type, we
obtain an expression of the double integral as a multiple of Ej(uy — s, u3 + s, u4 +
s, us+s,u7 —s, ug —s). Integrating first over z and using the hyperbolic Askey-Wilson
integral (4.18), we obtain an expression of the double integral as a multiple of By (u).
The resulting identity is (4.19) for a restricted parameter domain. Analytic continuation
now completes the proof. O

Corollary 4.12. The hyperbolic Euler integral Ej(u) has a unique meromorphic con-
tinuation to u € C® (which we also denote by Ej,(u)).

From the degeneration from Sj, to Ej, (see Proposition 4.8) it is natural to interpret
the parameter domain C® as Gaj/ Cor7g via the bijection

6
C69ul—>(M],...,ug,Zia)—Zuj,O)+(Ca7_8. (4.20)

j=1
We use this identification to transfer the natural Wi (Dg) = W(E7)a7—8—action on §ip/

Cat74 to the parameter space C" of the hyperbolic Euler integral. It is generated by per-
mutations of (u1, ..., ug) and by the action of w € W (Dg), which is given explicitly
by

w(u):(m+s,u2+s,u3+s,u4+s,u5—s,uﬁ—s), ueCe, 4.21)

wheres = iw— % (u1+uz+usz+us). Aninteresting feature of Wi (Dg)-symmetries of the
hyperbolic Euler integral (to be derived in Corollary 4.14), is the fact that the nontrivial
w-symmetry of Ej generalizes to the following explicit integral transformation for Ej,.

Proposition 4.13. For periods wi, wy € C with RN(w1), N(wz) > 0 and wjwy € Ry
and for parameters s € C and u = (uy, ..., ug) € CO satisfying

O )5

w12 w12 w12 w12 w12

(4.22)

N w ur+ur+usz+uy

us +ug — 2s 2w
( ) > 9R(—)

and
S(uj—iw) <0 (j=1,...,4), S(up —iw) < J(s) <0 (k=5,6), (4.23)

we have

. . G(iw=£2x)
En(ui,ur,usz,ug,io+s+x,iwo+s — x) dx
R Gus —s=xx,ue—sxx)

Gliw —us — ug+2
— 2o, CU@Tus Tue+2S) L (4.24)

G@w — us — ug, iw + 25s)
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Proof. Observe that the requirement wiwy ¢ R. ensures the existence of parameters
ueClands e C satisfying the restraints (4.22) and (4.23). Furthermore, (4.22) ensures
that

4

S (3 uy)), 3(— Zuj+21a)+2s))>‘ﬁ(

w1w2

2w

w1w2

),

hence both hyperbolic Euler integrals in (4.24) are defined. We derive the integral trans-
formation (4.24) by considering the double integral
/ G(iw=E2z,iw £ 2x)

R

. 4 6 dde,
2 Gliw+s :I:x:l:z)szl Gujx2)[li_s Glux —s £x)

which absolutely converges by (4.22). Integrating the double integral first over x using
the hyperbolic Askey-Wilson integral (4.18) yields the right-hand side of (4.24). Inte-
grating first over z results in the left-hand side of (4.24). O

Corollary 4.14. The hyperbolic Euler integral E,(u) (u € C®) is symmetric in
(ui, ..., up) and it satisfies

6
Ep(u) = Ey(wu)G(io —us —ug) GO uj —3iow) [] Gliw—u;—up)
j=1 1<j<k<4
(4.25)

as meromorphic functions in u € CO.

Proof. The permutation symmetry is trivial. For (4.25) we apply Proposition 4.13 with
s=iw—5 (u1 +us +u3 +usq). The hyperbolic Euler integral in the left-hand side of the
integral transformation (4.24) can now be evaluated by the hyperbolic beta integral (4.6).
The remaining integral is an explicit multiple of Ej, (wu). The resulting identity yields
(4.25) for a restricted parameter domain. Analytic continuation completes the proof. O

Remark 4.15. The w-symmetry (4.25) of Ej can also be proved by degenerating the
w-symmetry of Sy, or by relating (4.25) to a Wa(Dg)-symmetry of By, using Theorem
4.11.

The longest Weyl group element v; € Wi (Dg) and the longest Weyl group element
v € W(E7) have the same action on G»;,,/ (Coz;g. Consequently, under the identification
(4.20), vy acts on C® by

viw) = (iw—uj,...,i0—ug), uecCS.
Corollary 4.16. The symmetry of the hyperbolic Euler integral Ej(u) with respect to
the longest Weyl group element vy € Wi (Dg) is
6
Epyw) = Ey(iw)G(=3io+ Y uj) [] Glo—u;j—w)
J=1  1<j<k<6

as meromorphic functions in u € C°.



60 F. J. van de Bult, E. M. Rains, J. V. Stokman

Proof. For parameters u € Gy;,, such that both u and vu satisfy the parameter restraints
of Proposition 4.8, we degenerate the v-symmetry (4.9) of S using (4.17). Analytic
continuation completes the proof. O

The contiguous relations for Sj, degenerate to the following contiguous relations for
Ey.

Lemma 4.17. We have
szl s((uj +us)/w)

s((us — ug +2iw) /wy)

(En(ti2'u) — En(u)) — (us <> ue)

6
= s((us % ug) /w2)s((2iw — D uj)/wr) En(u) (4.26)
j=l1

as meromorphic functions in u € CS.

Proof. Use Proposition 4.8 to degenerate the contiguous relation (4.11) for the hyper-
bolic hypergeometric function S, to E;. O

4.6. Ruijsenaars’ R-function. Motivated by the theory of quantum integrable, relativ-
istic particle systems on the line, Ruijsenaars [26, 28, 29] introduced and studied a
generalized hypergeometric R-function R, which is essentially the hyperbolic Barnes
integral Bj,(u) with respect to a suitable reparametrization (and re-interpretation) of
the parameters u € Gy;,. The new parameters will be denoted by (y, x, A) € C® with
¥ =1, ...,va)T € C* where x (respectively A) is viewed as the geometric (respec-
tively spectral) parameter, while the four parameters y; are viewed as coupling constants.
As a consequence of the results derived in the previous subsections, we will re-derive
many of the properties of the generalized hypergeometric R-function, and we obtain a
new integral representation of R in terms of the hyperbolic Euler integral Ej,.
Set

3

Ny) =[] Gln+iy; +iw).
j=1

Ruijsenaars’ [26] generalized hypergeometric function R(y; x, A; 1, w2) = R(y, L) is
defined by

1 N(y)
R(y;x,)) = - — B, (u), 4.27
ix ) = s Gl Ex. i £y ot (4.27)
where u € Giy/CPBi278 With
Uy =iw, Uy =iw+iyy+iyl, uz = —iyo+x, Uy = —iyp — X,
us = —iPo+Ar, Ueg=—iYo—Ar, Uj=liw+iyy+iy:, ug=Iiw+iyy+iy;s.
(4.28)

Note that R(y; x, A; w1, wp) is invariant under permuting the role of the two periods
w1 and wy. Observe furthermore that the map (y, x, A) — u + CB1278, with u given by

(4.28), defines a bijection C® > Goi,/CB127s.
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We define the dual parameters 7 by

11 1 1

N If11 —1-1

)/:5 1211 -1 |7 4.29)
1-1-11

We will need the following auxiliary function:

cv: ) = gy =0 GO —iv)).
The following proposition was derived by different methods in [28].
Proposition 4.18. R is even in x and A and self-dual, i.e.
R(y;x,A) = R(y; —x,A) = R(y; x, =A) = R(Y; A, x).

Furthermore, for an element o € W (Dg), where W (Dy) is the Weyl-group of type Dy
acting on the parameters y by permutations and even numbers of sign flips, we have
R(y;x, ) _ R(oy;x, )
c(y; )e@; MN(y) — cloy;x)e(@y; MN(oy)
Proof. These symmetries are all direct consequences of the W5 (Dg)-symmetries of the

hyperbolic Barnes integral B, (see Proposition 4.7). Concretely, note that the W (Dg)-
action on C% = Gy;,,/CPi27s is given by

578(¥s X, A) = (Y0, Y1, V3. V2, X, A),
518(% X, )"): (_V37 Y1, V2, —Y0, X, )\‘)1
w(y,x, M) =1, Y0, V2, V3. X, L),

1 R i 1 R i 1 R i
s45(y, x, M) = (5(7/0 +70) + E(x +A), E(V1+V1) - E(X +A), §(V2+V2) - E(x + 1),

1 j ] 1 ] 1
§<y3+93)—’5<x+x), %(190 — y)+5 (=), %(190—1/0) + Eu—x)),

534()/’ X, )\') == (V, —X, A’)’

SSG(V’ X, )") = (V, X, _)")

The fact that R(y; x, 1) is even in x and A follows now from the s34 € W)(Dg) and
556 € Wa(Dg) symmetry of By, respectively (see Proposition 4.7). Similarly, the duality
is obtained from the action of s3554¢ and using that yo+y; = yo+7; (i = 1, 2, 3), while
the W (D4)-symmetry in y follows from considering the action of s,7 € W»(Dg) (which
interchanges y| < 2), s78, s1g and w. O

Remark 4.19. Corollary 4.6 implies the explicit evaluation formula

Gliw+iy +iyj)
Gliw+iyj+iy3)G(ipj £ 1)

2
R(yiio+iys, ko) =[]
j=1

Using the W (D4)-symmetry of R, this implies
R(y;io+iyy, A w1, w2) =1,
in accordance with [26, (3.26)].
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Using Proposition 4.7 and Theorem 4.11 we can derive several different integral
representations of the R-function. First we derive the integral representation of R which
was previously derived in [1] by relating R to matrix coefficients of representations of
the modular double of the quantum group U, (s[> (C)).

Proposition 4.20. We have

N(y) G —iyo,x —iy1, A —iyo, A —ip1)

R(y;x,A) = - - — ——B ,
(s x 2) 2J/wiwy G(x+iy2, x +iy3, A+ip2, A+iy3) n()
where
A iw i A dw i
U1/2=x—§+7i5(1/0—)/1), v3/4=—x—§+7ﬂ:§(y3—y2),
A iw i A iw i
U5/6=§+7i5(—)/0—1/1), U7/8=§+7i5()/2+)’3),

and v/ =a £ Bmeans vy =a +pand vy = o — .

Proof. Express Bj,(s36ws3s5528wsigu) in terms of By, (1) using the W) (Dg)-symmetries
of the hyperbolic Barnes integral Bj, (see Proposition 4.7) and specialize u as in (4.28).
This gives the desired equality. O

Moreover we can express R in terms of the hyperbolic Euler integral £}, which leads
to a previously unknown integral representation.

Theorem 4.21. We have

1 [T Gliyo+iyj +io. h—ip))

R(y;x, ) = — L
R N GG +i70) a0
T | G(iyo+iyj+iw,A—i)7j)E .
= hv),
2@107 G +i70) [T=g Glivj £x)
where u € CO is given by
iw . ivo A . iw ivo A
N L L =1,....4), T L
ujp=—Fiyj-1- 5 +3 (J ) usje = — Ex+—--— 2
and v € C is given by
o . ivo A . iw ivo M
= iy + 2L —1,....,4), S Ch
vj =5 Tivjit 4o U ) vsj6= o tx — == =3

Proof. To prove the first equation, express R(y; x, A) in terms of R(—y3, y1, Y2, —Y0;
x, A) using the W(Dy4)-symmetry of R (see Proposition 4.18). Subsequently use the
identity relating By, to Ep, see Theorem 4.11. To obtain the second equation, apply the
symmetry of Ej; with respect to the longest Weyl-group element v; € Wi (Dg) (see
Corollary 4.16) in the first equation and use that R isevenin A. O

The contiguous relation for Ej (Lemma 4.17) now becomes the following result.
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Proposition 4.22. ([26]) Ruijsenaars’ R-function satisfies the Askey-Wilson second
order difference equation

A(y; x; w1, ) (R(y; x +iwy, A) — R(y; x, A) + (x < —x)
= B(y: A o1, 02)R(y: x, 1), (4.30)
where
[T_os(iw+x+iy;)/an)
s2x/w2)s2(x +iw)/wr)
B(y; & w1, w2) = s((A —iw —iPp)/@2)s(A +iw+iyp)/w2).

A(y; x; w1, w2) =

Remark 4.23. As is emphasized in [26], R satisfies four Askey-Wilson second order
difference equations; two equations acting on the geometric variable x (namely (4.30),
and (4.30) with the role of w; and w; interchanged), as well as two equations acting on
the spectral parameter A by exploring the duality of R (see Proposition 4.18).

For later purposes, it is convenient to rewrite (4.30) as the eigenvalue equation
(LYV2R(ys -, 05 01, @2))(x) = B(y; A @1, @) R(y; x, A; @1, @2)
for the Askey-Wilson second order difference operator

(E‘;,”“’Zf)(x) = Ay x; o1, ) (f(x+iow) — f(X)) +(x < —x).  (4.31)

5. Trigonometric Hypergeometric Integrals

5.1. Basic hypergeometric series. In this section we assume that the base g satisfies
0 < |g| < 1. The trigonometric gamma function [24] is essentially the g-gamma func-
tion I'y (x), see [5]. For ease of presentation we express all the results in terms of the
q-shifted factorial (z; q)oo, which are related to I'; (x) by

q:9 _
Ty(x) = L)Y - ke (1 - gy
(CI ’ q)oo
(with a proper interpretation of the right-hand side). The g-shifted factorial is the p = 0
degeneration of the elliptic gamma function,

Fe(z;0,9) = (5.1

1
(z:9)
while the role of the first order analytic difference equation is taken over by
(29) 0 = (1 =2 (q2: ) -

However there is no reflection equation anymore; its role is taken over by the product
formula for Jacobi’s (renormalized) theta function

0z q) = (2.9/2:9) -

As a function of z the g-shifted factorial (z; q)oo is entire with zeros at z = ¢~ " for
n € Zxo. In this section we call a sequence of the form ag™" (n € Zx() an upward
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sequence (since they diverge to infinity for large n) and a sequence of the form ag”
(n € Z>p) a downward sequence (as the elements converge to zero for large n).

We will use standard notations for basic hypergeometric series from [5]. In particular,
the ,+1¢, basic hypergeometric series is

o0
at, ..., dr41, al,'w ar+1;Q)n n
1 g,z z, 7zl <1,
r+¢r(b1,,,, 2 ) Z‘qbl,...,br;q)n 2

where (a; q) 0(1 — ag’) and with the usual convention regarding products of
such expressions. T e very-well-poised ,11¢, basic hypergeometric series is
b
) ) ai,qaj,—qai,as, ..., are1
r+1Wr(al,a4,a57-~'sar+1’q:z):r+1¢r % %1 1 " yq’Z
aj,—aj,qay/as, ..., qay/ar+1

Finally, the bilateral basic hypergeometric series v, is defined as
o
a,az, ..., a (al,az,...,ar;q)n n
14 ( g, z) = z
"Tr\by, by, ..., b, ;(bl,bz,__,,br;q)n

+Z (‘Z/bl,Q/wa-"CI/br;Q)n (bl"'br )n’

“= (q/a1,q/az, ..., q/ar;q), \a1- - arz

provided that |by ---b,/a; ---a,| < |z| < 1 to ensure absolute and uniform conver-
gence.

We end this introductory subsection by an elementary lemma which will enable us to
rewrite trigonometric integrals with compact integration cycle in terms of trigonometric
integrals with noncompact integration cycle. Let H. be the upper half plane in C. In this
section we choose T € H.; such that ¢ = e(t) once and for all, where e(x) is a shorthand
notation for exp(2mix). We furthermore write A = Z + Zt.

Lemma 5.1. Let u, v € C be such that u &€ v + A. There exists an n = n(u,v) € C,
unique up to A-translates, such that

O(e(u +v—n—x),e(x —n); q)
O(e(u —mn), e(v—n); q)
_ (e((v —u)/t) — I)O(e(x —u),e(v —x); q)
(4,45 9) .0 (e —u); q)
1
x Z l —e((v—x —n)/t))(e((x +n—u)/t) — 1)

n=—oo

(5.2)

Proof. Set g = e(—1/1). The bilateral sum

e}

fo= > 1
o= (1= e(w—x—m/D)(e(@x +n—u)/t)—1)

_ 1 " ( e((v —x)/1), e((u — x)/7) )
(1 —e((w -/ e(x —w/r) — 1) 27 \Ge(w — x)/0), Ge(@ — x) /1)1
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defines an elliptic function on C/A, with possible poles at most simple and located at
u+ A and at v+ A. Hence there exists a n € C (unique up to A-translates) and a constant
C, € C such that

Oe(u+v—n—x),e(x—n);q)

fx) =G, O(e(x —u), e(v—x); q)

We now compute the residue of f at u in two different ways:

T 1

27i (1 —e((v—u)/7))

Reyt) =

from the bilateral series expression of f, and

~ _& 9(6(” —n),e(v—n); 6])
S "0 (g g ) b lew— i)

from the expression of f as a quotient of theta-functions. Combining both identities
yields an explicit expression of the constant C), in terms of 7, resulting in the formula

fx) = T(q’ q; q)ooe(e(v —u); C[) 9(8(14 +v—n—x),e(x —n); q)
(e =—w/r)—1)  O(e(x —u), e(v —x), e — 1), e(v—1): q)

for f. Rewriting this identity yields the desired result. O

5.2. Trigonometric hypergeometric integrals with E¢ symmetries. We consider trigo-
nometric degenerations of S.(¢) (t € Hp,) along root vectors & € R(Eg) lying in the
W (E7) = W(Eg)s-orbit

O = W(E (af) = (el yje | 1< j <k <8}, (5.3)

cf. Sect. 2. The degenerations relate to the explicit bijection

Go — Glog(pg)»  (U1,...,ug) = (uy, ..., ug) +log(pq)a (5.4)

on the parameter spaces (in logarithmic form) of the associated integrals. We obtain two
different trigonometric degenerations, depending on whether we degenerate along an
orbit vector of the form o = a;fk, or of the form yj«.

Specifically, we consider the trigonometric degenerations S;(¢) respectively U,(t)
(t € Hy) of S.(t) (t € Hpy) along the orbit vector afg and yjg respectively. The
orbit vector oy (respectively y1g) is the additional simple root turning the basis Aj
(respectively Aj) of R(E7) into the basis Ay (respectively ‘A») of R(Eg), see Sect. 2.
The induced symmetry group of S;(¢) (¢t € Hp) is the isotropy subgroup W(E7)al+8 of
W (E7), while the induced symmetry group of U, (t) (t € Hy) is W(E7)y,,. It follows
from the analysis in Sect. 2 that W(E7)0[;r8 = W(E7)y, is a maximal, standard par-
abolic subgroup of W (E7) with respect to both bases A; and Aj, isomorphic to the
Weyl group W (Es) of type Eg, with corresponding simple roots A} = Ay \ {a3;} and
A, = Ay \ {ag;}, and with corresponding Dynkin diagrams,
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Oy O3z y3 U5y Ogs  Ogq  Ogy Qg fBsgrg 045 O3y O3

I B1234 I oc,

56
Observe that o ¢ and - are the highest roots of the standard parabolic root system
R(E¢) of type E¢ in R(E7) corresponding to the bases A’] and A’2 respectively. From
now on we write

W(Ee) := W(E7)qr, = W(E7)ys-

We first introduce the trigonometric hypergeometric integrals S;(¢) and U;(t)
(t € Hy) explicitly. Their integrands are defined by
It(t. Z) _ (Z:I:Z’ tl—lZ:I:l’ ZS—IZ:I:I; q)oo
[T (tj2% @)oo

Ot/ 1z, z/ 1k q) ( zz) (z/ti39) o
JHt ) =2 1
) Ot/ 18/15 q) q lll (tiz:q) o jl_llg (tjz/q, t,/z q)y

wheret = (t1,...,13) € ((CX)S.Forgenerict = (11, ...,13) € C¥satisfying Hf-:] tj =
1 and generic u € C we now define the resulting trigonometric hypergeometric integrals
as

d
s,<r)=/cl,<z; - U#(t)=/ T

2miz 2m

where C (respectively C’) is a deformation of the positively oriented unit circle T includ-
ing the pole sequences ¢ quZO (j =2,...,7) of I;(t; ) and excluding their reciprocals
(respectively including the pole sequences ¢ quZ" (j =1, 8) of J(¢; z) and excluding
the pole sequences tj_qufl (j = 1,8) and tl._qufo (i =2,...,7)). As in the ellip-
tic and hyperbolic cases, one observes that S; () (respectively U,” (t)) admits a unique
meromorphic extension to the parameter domain {r € C8 | H;g»:l tj = 1} (respectively

{(n,1) € C* x C8 H?:l t; = 1}). We call S;(¢) the trigonometric hypergeometric
function.

Lemma 5.2. The integral U} (¢) is independent of u € C*.

Proof. There are several different, elementary arguments to prove the lemma; we give
here the argument based on Liouville’s Theorem. Note that U,q by = Ul (1), and that

the possible poles of u > U/ (t) are at qu (j = 1, 8). Without loss of generality we
assume the generic conditions on the parameters ¢ € c?® (H?Z1 tj = 1) such that U ,M (1)

admits the integral representation as above, and such that #; ¢ tqu. The latter condition
ensures that the possible poles thZ, tqu of o+ U/*(t) are at most simple. But the
residue of U/*(t) at u =t ; (J =1, 8) is zero, since it is an integral over a deformation
C’ of T whose integrand is analytic within the integration contour C’ and vanishes at the
origin. Hence C* 5 i + U/ (¢) is bounded and analytic, hence constant by Liouville’s
Theorem. O
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In view of Lemma 5.2, we omit the u-dependence in the notation for U/ (¢). Since
I(—t;2) = I,(t; —2) and J/*(—t; z) = J, " (t; —z), we may and will view S, and U,
as meromorphic function on Hj.

By choosing a special value of w, we are able to derive another, “unfolded” inte-
gral representation of U (r) as follows. Let H, be the upper half plane in C. Choose
t € H such that g = e(t), where e(x) is a shorthand notation for exp(2mix). Recall
the surjective map v : Go — H; from Sect. 2.

Corollary 5.3. For generic parameters u € Gy we have

Ui(Yo2miu))
_ 2 (e((ug —u)/7) — 1)
(q.q:q) , eO(e(us — u1); q)

/ ( e(Zx)) L o(etxr—uj)iq), (qex —ur). qge(x —ug)iq),,
RIEEETY
Ju q (e(x+uj)iq), (g7 e(x+up), g le(x +ug): q)

j=2

X e(r) dx
(1 —e(us —x)/D))(1 —e(tx —un/1)) |

where the integration contour L is some translate &€ + R (& € iR) of the real line with a
finite number of indentations, such that C separates the pole sequences —uy +Z+7<17,
—ug +Z+7Z<i1t and —uj +Z + Z<ot (j = 2,...,7) of the integrand from the pole
sequences uy + Z>ot and ug + Z>oT.

Remark 5.4. Note that always & # 0 in Corollary 5.3. Due to the balancing condition
Z?: (uj = 0, there are no parameter choices for which £ = R can be taken as an
integration contour. This is a reflection of the fact that there are no parameters t € H;
such that the unit circle T can be chosen as an integration cycle in the original integral

representation U, (t) = fc, JH(t; Z)% of U, (1).

Proof. In the integral expression
, , dz
Ur(Ye2min)) =/ I (oQ@min); 2) 5——,
c 2miz

we change the integration variable to z = e(x), take u = e(n(uy, ug)), and we use
Lemma 5.1 to rewrite the quotient of theta-functions in the integrand as a bilateral sum.
Changing the integration over the indented line segment with the bilateral sum using
Fubini’s Theorem, we can rewrite the resulting expression as a single integral over a
noncompact integration cycle £. This leads directly to the desired result. O

In the following lemma we show that U, (¢) can be expressed as a sum of two non-
terminating very-well-poised 10¢9 series.

Lemma 5.5. As meromorphic functions int € Hj, we have

2 T (/15 9)
(-1 nt8/q.18/11:9) 25 (11j14)

l‘l2 11g
X 10 Wo ;;t1t2,t1t3,...,t1t7,7;q,q +(t < 13).

Ui (1) =
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Proof. For generic t € H] we shrink the contour C’ in the integral representation
of U(t) = Jo I} (15 2) 72 - to the origin while picking up the residues at the pole
sequences 71¢%=0 and 13g%=° of the integrand JI“(t; 7). The resulting sum of residues
can be directly rewritten as a sum of two very-well-poised 19¢9 series, leading to the
desired identity (cf. the general residue techniques in [5, §4.10]). O

Remark 5.6. Lemma 5.5 yields that U;(t) is, up to an explicit rescaling factor, an inte-
gral form of the particular sum & of two very-well-poised 1o¢9 series as e.g. studied in
[7] and [15] (see [7, (1.8)], [15, (9¢)]). Note furthermore that the explicit u-dependent
quotient of theta-functions in the integrand of U/ (¢) has the effect that it balances the
very-well-poised 19¢9 series when picking up the residues of J/(¢; z) at the two pole
sequences thZZO and tquiO.

In the following proposition we show that S, (respectively Uy ) is the degeneration of
S, along the root vector oy (respectively yig).

Proposition 5.7. Let t = (11, ...,13) € C3 be generic parameters satisfying the bal-
ancing condition H?‘:l tj = 1. Then

Sy () = lim S.(pgt1, 2, ..., 17, pqtg),
p—0

1 1 1 | (5.5)
Ui(t) = ;LT%Q(IIfS/P‘E q)Se((pg)" 211, (pq) 212, ..., (pq) 217, (pq)~ 213).

Proof. For the degeneration to S;(¢) we use that

7
[Tj=s Tetjz™"s poq)
Fe@*2, 17 2% 15" 2* 1 pL g)

I.(pgt1, 12, ..., t7, pqtg; 2) =

in view of the reflection equation for I',, which (pointwise) tends to I;(¢;z) as p — 0
in view of (5.1). A standard application of Lebesgue’s dominated convergence theorem
leads to the limit of the associated integrals.

The degeneration to U,(¢) is more involved, since one needs to use a nontrivial sym-
metry argument to cancel some unwanted sequences of poles of I.(z; z). To ease the
notations we set

= ((pq)*%tl, (P@)it2, ..., (pg) i1, (pq)*%zg)

and we denote

0((pq)~2tits/nz, (pq) 20z, (pq)~ 213z, (pg) 212/ q)

Q(Z) - O(Z q)

By (3.6), we have the identity

0()+ 0@ " =0(nts/pg. t1/m. st q).

-1

Since the integrand /.(z); z) is invariant under z = z~°, we can consequently write

0(t11s/pq: 4)Selty: 2) = / 0 L(1; z)—

0(r/u, ts/M q)
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with C a deformation of the positively oriented unit circle T separating the downward

. . 1

pole sequences of the integrand from the upward pole sequences. Taking (pg)2z as a
new integration variable and using the functional equation and reflection equation of I',,
we obtain the integral representation

0(nrs/mnz. 2/ q) ! LCe(tjzs p, q)
0 (11, 1 q)Se(ty; 2) =2 0 : _cJm A7
(n1s/pg: 4)Se(ay: 2) /c ot rnimia) ¢ p)lzlzre(z/rj;p,q)
dz

27iz’

X H Te(tjz/q.1/z: p. q) (5.6)

j=1,8

where C is a deformation of the positively oriented unit circle T which includes the pole
sequences 11 pZ=0g7=0 | g pZ=04%=0 and tj plzig?=1(j =2, ..., 7),and which excludes
the pole sequences tl_lpzﬁoqul, tg_lpzfoqzﬁ1 and tj_lpzﬁoquo G=2,...,7). We
can now take the limit p — 0 in (5.6) with p-independent, fixed integration contour C,
leading to the desired limit relation

;iino@(flfs/pq; q)Se(tp) = U ().

]

Remark 5.8. Observe that Lemma 5.5 and the proof of Proposition 5.7 entail independent
proofs of Lemma 5.2.

By specializing the parameters ¢t € H; in Proposition 5.7 further, we arrive at trigo-
nometric integrals which can be evaluated by (3.2). The resulting trigonometric degen-
erations lead immediately to the trigonometric Nassrallah-Rahman integral evaluation
formula [5, (6.4.1)] and Gasper’s integral evaluation formula [5, (4.11.4)]:

Corollary 5.9. For generic t = (11, ...,t) € C® satisfying the balancing condition
H?:l tj = 1 we have

/ (217 q) dz _ 2H?:2(1/tltj;Q)oo
c H?:2(Z‘J‘Zil;q)oo 2riz (q:q) H2<j<k<6(tjtk;q)

0(rst6/ 1z, 2/ 105 q) (2/17:4) o dz
/C’ : (1 q),lill ( H 2miz

0(ts/1e. 16/ 145 q) 12q) 0 s (624 tk/z )
_ [licjorea(V/tit3 9) o
(q.156/: q) o TTj=i s (titk: @) o

where C is the deformation of T separating the pole sequences t quZO (G=2,...,6)
of the integrand from their reciprocals, and where C' is the deformation of T separating

the pole sequences t5q%=9, tsg%=0 of the integrand from the pole sequences 1 qu<0

(]:1,...,4),t51 Z< and tg ! Z<1.
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Proof. For the first integral evaluation, take r € Hy and t7 = g Uin the degeneration
from S, to S;, and use the elliptic Nassrallah-Rahman integral evaluation formula (3.2).

For the second integral evaluation, take t € H; with t5 = £ Uin the degeneration
from S, to U}* and again use (3.2) to evaluate the elliptic integral. It leads to the second
integral evaluation formula with generic parameters (¢1, 2, 13, 14, t5, 13) € Co satisfying
t---tstg=1. 0O

The second integral in Corollary 5.9 can be unfolded using Lemma 5.1 as in Corol-
lary 5.3. We obtain for generic parameters u € C® satisfying Z?:] uj =0,

4

/ |(1 B e(2x)) 1 (ex —uj)iq), (qe(x —us). ge(x —ug)iq),
L q

i (e(x+uj)iq),, (¢ e(x +us). g7 e(x +ue): q)

X e(x) dx
(1 —e((ue —x)/1)) (1 — e((x —us)/7))

_ o wsfs/1siq) (3 9) oo icjansa (170085 0) o
(e(us — us)/m) — 1) (1st6/q) [Ty [Los (263 4)

where v € L, such that g = e(t), wheret; = e(u;) (j =1, ..., 6) and where the inte-
gration contour L is some translate £ + R (§ € iR) of the real line with a finite number of
indentations, such that C separates the pole sequences —us+Z+7Z<1t, —ue¢+2Z+7Z<17
and —u;+Z+7Z<ot (j =1, ...,4) of the integrand from the pole sequences us +Z>ot
and ue + Z>ot. This is Agarwal’s identity [5, (4.7.5)].

Furthermore, using Lemma 5.5 the second integral in Corollary 5.9 can be written
as a sum of two very-well-poised g¢7-series. We obtain for generic ¢ € C satisfying

6
[Ti=itj=1.

4 2
1 (ts/t: q) 5 1516
3 H —22 g Wy (=3 1511, 1512, 1513, I5t4, =5 ¢, ) +(t5 <> 16)
(9.13.156/q. 16/15:4) o 1=y (1503 @)og q q

H1§j<k§4(1/tjtk; q)oo
(4 1516/ 0) o0 [t [Tos (tjtk: @) o

which is Bailey’s summation formula [5, (2.11.7)] of the sum of two very-well-poised
g¢7 series.

We can now compute the (nontrivial) W (E)-symmetries of the trigonometric hyper-
geometric integrals S; and U; by taking limits of the corresponding symmetries on the
elliptic level using Proposition 5.7. We prefer to give a derivation based on the trigono-
metric evaluation formulas (see Corollary 5.9), in analogy to our approach in the elliptic
and hyperbolic cases.

Proposition 5.10. The trigonometric integrals S;(t) and U,(t) (t € H1) are invariant
under permutations of (t1, t3) and of (t2, . . ., t7). Furthermore,

(1/t10, 1/ 0113, 1/ 111, /1315, 1/ 1516, 1/ 18175 q)
(213, ot 1314, Il 517, 16173 q)
(1/1213, 1/ 1214, 1/ 1314, 1/ 1516, 1/ 1517, 1/ 16175 )
(tl Iy, 113, tia, 1513, 1613, 1718, 11)00

Si (1) = Sy (wr) )

(5.7)
Ui(t) = Ui (wr)
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as meromorphic functions int € 'Hj.

Proof. In order to derive the w-symmetry of S;(¢#) we consider the double integral

NE ST S R
/ (22 x =2 0 2 st xF i g) dz dx
1 (025, 52z, szEaE s s s loxEl g lipxtl g)  2miz 2mix

for parameters (f1,...,13) € C8 satisfying Hf-:l tj = 1, where sPtinnty = 1 =
s 2tstet7t3 and where we assume the additional parameter restraints

021, 1131, Jal, Is|, 1s/s1, te /s, 1t /s] < 1

to ensure that the integration contour T separates the downward sequences of poles from
the upward sequences. The desired transformation then follows by either integrating the
double integral first to x, or first to z, using in each case the trigonometric Nassrallah-
Rahman integral evaluation formula (see Corollary 5.9).

The proof of the w-symmetry of U, (¢) follows the same line of arguments. Fore > 0
we denote €T for the positively oriented circle in the complex plane with radius € and
centered at the origin. The w-symmetry

(1/0213, 1/ 1214, 1/ 1314, 1 /1586, 1/ 1517, 1/ 16173 q)

UM (1) = UM (wt)
(t1t2, 1113, 1114, 1513, 613, 17135 )

for t € Hy, where s2t1t2t3t4 =1= s_2t5t6t7tg, by considering for (¢, ...,#3) € (o
satisfying H?-:l tj = 1 the double integral

/ 0(stitg/pz, 132/ pwx, X/ 11: q) . 2 . x?

(1gsim)> | 0 (sts/m, st1/m, 18/s125 q) q q
(z/tz,z/tg,z/m,xz/s,sx/t5,sx/t6,sx/t7;q)oo dz dx
(tlz/q,tl/z,tzz,t3z,t4z, sxz/q,sz/x,5x/z, t5)c/s,t6)c/s,t7)c/s,tg)c/qs,tg/sx;q)OO 2mwiz 2mwix

with s211 121314 = 1 = s~ 2t5t6t713, where we assume the additional parameter restraints

1 -1y ,—1 -1 -1 2
0<lsllg2l, Il 1t L ey 1 < lgsl, sl ltels 1871 < 1g™ "1, 18] < lgs~|

to ensure a proper separation by the integration contours of the upward sequences of
poles from the downward sequences. Using the second trigonometric integral evalua-
tion formula of Corollary 5.9 then yields the desired result for the restricted parameter
domain. Analytic continuation completes the proof. O

Remark 5.11. Rewriting U;(t) as a sum of two very-well-poised 1o¢9 series (see
Lemma 5.5 and Remark 5.6), the w-symmetry of U,(f) becomes Bailey’s four-term
transformation formula [5, (2.12.9)], see also [7]. The identification of the symmetry
group of U; with the Weyl group of type E¢ has been derived by different methods in
[15].

Finally we relate the two trigonometric integrals S; and U,. We can obtain the follow-
ing proposition as a degeneration of a particular W (E7)-symmetry of S., but we prefer
here to give a direct proof using double integrals.
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Proposition 5.12. As a meromorphic function int € Hy, we have

H2§j<k§5(fjfk§ Q) oo (16175 ) oo

S¢ (1)
(I/qt11g, 1/ t1t6, 1/ 1117, 1/ t8t6, 1/1817; @)oo

= U (tg/s, sty, st3, St, st5, 11 /s, 18/, t7/5),

where tzl‘3t4t5S2 =1= t1t6t7l8/S2

Proof. For (11, ..., t3) € C? satisfying H?:l tj = 1 we consider the double integral
2 5
/ / 0(uz, tot10/5°2) (1 B z_) 1 1
cenT Jxer OGsit/s. t1i1/s) q) ;25 0= @)oo
(xF2, zxF /s, s2/11, 52/18: @)oo dx dz

X . . 9
(szx®l, 11z/5q,17/52, 162/5q . 16/52, 112/5, 182/55 @)oo 2ix 27iz

. . . 1

with s2n2 131415 = 1 = s 21 tet7tg and with 0 < 5 < rn1n(|s_1 [, 1g2 |), where we assume
the additional parameter restraints

-1

2l |63, ltal, losl < 1, tel, 7] < mlsl, Il lis] < ™ s

to ensure a proper separation by the integration contours of the upward sequences of
poles from the downward sequences. Using Corollary 5.9, we can first integrate over
x using the trigonometric Nassrallah-Rahman integral evaluation formula, or first inte-
grate over z using the second integral evaluation formula of Corollary 5.9. The resulting
identity gives the desired result for restricted parameter values. Analytic continuation
completes the proof. O

Remark 5.13. (i) Combining Proposition 5.12 with Lemma 5.5 we obtain an expres-
sion of S;(¢) as a sum of two very-well-poised 10¢9 series, which is originally due
to Rahman [5, (6.4.8)].

(ii) Fore.g.tite = q™ (m € Zxp), it follows from (i) (see also [20] and [5, (6.4.10)])
that the S;(¢; p, ¢) essentially coincides with the biorthogonal rational function
of Rahman [20], which is explicitly given as a terminating very-well-poised j9¢9
series.

5.3. Contiguous relations. The fundamental equation on this level equals

1 1 1
(I —vx™) 1 —yzZHY + =1 —vy™Hd —zx™H + —(1 —vz"H 1 —xyTH =0,
y z X

(5.8)

where (1 — ax®!) = (1 — ax)(1 — ax~'). The fundamental relation (5.8) is the p = 0
reduction of (3.6). In this section 7;; = 7;; 12 4 ets asin the elliptic case by multiplying

t; by g and dividing ¢; by ¢. Formula (5 8) leads as in the elliptic case to the difference
equation

o _
w&(msﬁ + (15—/;1)5;(%50 =S80, teH. (59

(1 — tat3h) (1 — 1t
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To obtain a second difference equation between trigonometric hypergeometric functions
where two times the same parameter is multiplied by ¢, we can mimic the approach in the
elliptic case with the role of the longest Weyl group element taken over by the element
u = wsssssew € W(Eg). Alternatively, one can rewrite the difference equation (3.8)
for S, in the form

0(13/qts, 1/ 1115, 1/ 1315, 1215/ q, 1516/ 1517/; D)
0(3/15: p)
= 0(1/qt1ts, 1/qtgts, trts, tate, tat7; p)Se (D),

Se(tast) + (13 <> 15)

where t € H; and7 = ( pqti, b, ..., t7, pqts), and degenerate it using Proposition 5.7.
We arrive at

(1 —13/qt4) (1 —1/tst}) (1 — 151;/q)
—
(I—1n3/15) jgg (1 — 1/qtat}) j=21_,[6,7 (0 —1at)) 1 (T451)

+(13 < t5) = S;(t), t € H;. (5.10)
Together these equations imply the following result.
Proposition 5.14. We have
A(1)S; (tast) + (14 <> t5) = B(1)S; (1) (5.11)

as meromorphic functions in t € Hy, where

Am__wqﬁa—ﬁwmmwa—%)
fa(1 =B (1 — (1 - &)
B (1= ) (= ) (1 = 1386) (1 — 1786) (1 — 12t6)
- t6(1 — 2)(1 — 1)

1 1t
+(1 - ;—j)(l —tet4) [] ;21 5(1 — tj_ls) 05,01 - JTS)

By -4y by &
t5(1— 22) (1= S5 (1 = )1 - %)

1 tit
+(1 - ;_g)(l — Iots) Hj:l,g(l - ,]_,4) Hj:2,3,7(1 - 174)

t6(1 — 1)1 = 22)(1 = 7)1 = 2)

Despite the apparent asymmetric expression B still satisfies B(sg7¢t) = B(?).

The contiguous relation for the elliptic hypergeometric function S, with step-size p
can also be degenerated to the trigonometric level. A direct derivation is as follows. By
(3.6) we have

05 ' 15" q)
0(tt55 q)
015" 1F" )
0trts"s q)

Ii(t1, 1, ..., 15, q18, 17, 16/ 2)

Ii(ti, t, ..., t6, qt3, t7/q5 2) = 11 (¢ 2).
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Integrating this equation we obtain

0ty ' @)

= Si(t1,ta, ..., 15, g3, 17, 16/ q) + (6 <> t7) = S; (1) (5.12)
O(tst7 5 q)

as meromorphic functions in t € H{, a three term transformation for S;. The three term
transformation [7, (6.5)] is equivalent to the sum of two equations of this type (in which
the parameters are chosen such that two terms coincide and two other terms cancel each
other).

Remark 5.15. In [15] it is shown that there are essentially five different types of three
term transformations for ® (see Remark 5.6), or equivalently of the integrals U, and
S;. The different types arise from a careful analysis of the three term transformations in
terms of the W (E7)-action on H;. It is likely that all five different types of three term
transformations for @ can be re-obtained by degenerating contiguous relations for S,
with step-size p (similarly as the derivation of (5.12)): concretely, the five prototypes
are in one-to-one correspondence to the orbits of

{(a, B, y) € 03 a, B, y are pair-wise different}

under the diagonal action of W (E7), where O is the W (E7)-orbit (5.3).

5.4. Degenerations with Ds symmetries. In this section we consider degenerations of
S; and U; with symmetries with respect to the Weyl group of type D5. Compared to the
analysis on the hyperbolic level, we introduce a trigonometric analog of the Euler and
Barnes’ type integrals, as well as a third, new type of integral arising as degeneration of
U;. We first introduce the degenerate integrals explicitly.

For generic t = (¢, ...,1) € ((CX)6 we define the trigonometric Euler integral as
+2 -1 &1
(A ST d
E/(1) =/ ( O ©)os < (5.13)
C Hj:Z(th ’Q)oo 2miz

where C is a deformation of the positively oriented unit circle T separating the decreasing
pole sequences ¢ quZO (j =2,...,6) of the integrand from their reciprocals. We have

E;(—t) = E;(t), and E; has a unique meromorphic extension to ((Cx)ﬁ. The resulting
meromorphic function on (CX)G/ C> is denoted also by E;.

For generic © € C* and generic t = (11, ...,73) € C? satisfying the balancing
condition H?:l tj = 1 we define the trigonometric Barnes integral as

. (5.14)

B,(1) = 2/ 01217/ 1z, 2/ 1 q) (z/11,2/18: @)oo dz
t 