335 research outputs found

    Quantum Deconstruction of a 5D SYM and its Moduli Space

    Get PDF
    We deconstruct the fifth dimension of the 5D SYM theory with SU(M) gauge symmetry and Chern-Simons level k=M and show how the 5D moduli space follows from the non-perturbative analysis of the 4D quiver theory. The 5D coupling h=1/(g_5)^2 of the un-broken SU(M) is allowed to take any non-negative values, but it cannot be continued to h<0 and there are no transitions to other phases of the theory. The alternative UV completions of the same 5D SYM -- via M theory on the C^3/Z_2M orbifold or via the dual five-brane web in type IIB string theory -- have identical moduli spaces: h >= 0 only, and no flop transitions. We claim these are intrinsic properties of the SU(M) SYM theory with k=M.Comment: 46 Page

    Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions

    Get PDF
    We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the Îł array CLARA also allowed us to identify previously unknown Îł transitions in the nuclides 136Cs and 134I

    Evidence for the Jacobi shape transition in hot 46Ti

    Full text link
    The gamma-rays from the decay of the GDR in 46Ti compound nucleus formed in the 18O+28Si reaction at bombarding energy 105 MeV have been measured in an experiment using a setup consisting of the combined EUROBALL IV, HECTOR and EUCLIDES arrays. A comparison of the extracted GDR lineshape data with the predictions of the thermal shape fluctuation model shows evidence for the Jacobi shape transition in hot 46Ti. In addition to the previously found broad structure in the GDR lineshape region at 18-27 MeV caused by large deformations, the presence of a low energy component (around 10 MeV), due to the Coriolis splitting in prolate well deformed shape, has been identified for the first time.Comment: 8 pages, 4 figures, proceedings of the COMEX1 conference, June 2003, Paris; to be published in Nucl. Phys.

    g-factor measurements of isomeric states in 174W

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.ISBN: 978-88-7438-101-2; International audience; The experimental setup GAMIPE used for gyromagnetic factormeasurements at Laboratori Nazionali di Legnaro and a recent experimentalwork regarding K-isomers in 174W are described. Aim ofthe experiment is to study the detailed structure of the isomeric stateswave functions, by the measurement of the magnetic dipole moments.This piece of information can provide interesting hints for theoreticalmodels. Preliminary results concerning the population of the isomersof interest and half-lives are presented

    Lifetime measurements of N ≃ 20 phosphorus isotopes using the AGATA γ-ray tracking spectrometer

    Get PDF
    International audienceLifetimes of excited states of the phosphorus isotopes 1533,34,35,36P have been measured by using the differential recoil-distance method. The isotopes of phosphorus were populated in binary grazing reactions initiated by a beam of S36 ions of energy 225 MeV incident on a thin Pb208 target mounted in the Cologne plunger apparatus. The combination of the PRISMA magnetic spectrometer and an early implementation of the AGATA Îł-ray tracking array was used to detect Îł rays in coincidence with projectile-like nuclear species. Lifetime measurements of populated states were made within the range from about 1 to 100 ps. The number of states for which lifetime measurements were possible was limited by statistics. For P33, lifetime limits were determined for the first 3/2+ and 5/2+ states at 1431 and 1848 keV, respectively; the results are compared with previous published lifetime values. The lifetime of the first 2+ state of P34 at 429 keV was determined and compared with earlier measurements. For P35, the states for which lifetimes, or lifetime limits, were determined were those at 2386, 3860, 4101, and 4493 keV, with Jπ values of 3/2+, 5/2+, 7/21−, and 7/22−, respectively. There have been no previous published lifetimes for states in this nucleus. A lifetime was measured for the stretched π(1f7/2)⊗Μ(1f7/2)Jπ=(7+) state of P36 at 5212 keV and a lifetime limit was established for the stretched π(1d3/2)⊗Μ(1f7/2)Jπ=(5−) state at 2030 keV. There are no previously published lifetimes for states of P36. Measured lifetime values were compared with the results of state-of-the-art shell-model calculations based on the PSDPF effective interaction. In addition, measured branching ratios, published mixing ratios, and electromagnetic transition rates, where available, have been compared with shell-model values. In general, there is good agreement between experiment and the shell model; however there is evidence that the shell-model values of the M1 transition rates for the 3/21+→1/2+ (ground state) and 5/21+→3/21+ transitions in P33 underestimate the experimental values by a factor between 5 and 10. In P35 there are some disagreements between experimental and shell-model values of branching ratios for the first and second excited 7/2− states. In particular, there is a serious disagreement for the decay characteristics of the second 7/2− state at 4493 keV, for which the shell-model counterpart lies at 4754 keV. In this case, the shell-model competing electromagnetic decay branches are dominated by E1 and M1 transitions

    Hindered E4 decay of the 12+ yrast trap in 52Fe

    Get PDF
    Abstract The Îł decay of the 12 + yrast trap in 52Fe has been measured for the first time. The two E4 Îł-branches to the 8 + states are hindered with respect to other B ( E 4 ) reduced transition probabilities measured in the f 7 / 2 shell. The interpretation of the data is given in the full pf shell model framework, comparing the results obtained with different residual interactions. It is shown that measurements of hexadecapole transition probabilities constitute a powerful tool in discriminating the correct configuration of the involved wavefunctions

    Hindered E4 decay of the 12+ yrast trap in 52Fe

    Get PDF
    AbstractThe Îł decay of the 12+ yrast trap in 52Fe has been measured for the first time. The two E4 Îł-branches to the 8+ states are hindered with respect to other B(E4) reduced transition probabilities measured in the f7/2 shell. The interpretation of the data is given in the full pf shell model framework, comparing the results obtained with different residual interactions. It is shown that measurements of hexadecapole transition probabilities constitute a powerful tool in discriminating the correct configuration of the involved wavefunctions

    Shape transitions far from stability: The nucleus 58Cr

    Get PDF
    Abstract Excited states up to I π = 8 + in the neutron-rich nucleus 58Cr have been identified by using a new experimental setup composed of the large acceptance magnetic spectrometer PRISMA and the highly efficient Îł-detector array CLARA. Interestingly, the excitation energy sequence of the ground-state band follows the one expected by the E ( 5 ) dynamical symmetry for a nucleus at the critical point of the shape phase transition from a spherical vibrator ( U ( 5 ) ) to a Îł-soft rotor ( O ( 6 ) ). For the first time, in the same physical system, large scale shell-model calculations in the full fp shell are compared to the E ( 5 ) analytical model results and to the Interacting Boson Model. The theoretical results are in excellent agreement with the present data

    Superdeformation in 91Tc

    Get PDF
    A high-spin rotational band with 11 Îł-ray transitions has been observed in 91Tc. The dynamical moment of inertia as well the transition quadrupole moment of 8.1-1.4/+1.9 eb measured for this band show the characteristics of a superdeformed band. However, the shape is more elongated than in the neighbouring A = 80-90 superdeformed nuclei. Theoretical interpretations of the band within the cranked Strutinsky approach based on two different Woods-Saxon potential parameterisations are presented. Even though an unambiguous configuration assignment proved difficult, both calculations indicate a larger deformation and at least three additional high-N intruder orbitals occupied compared to the lighter SD nuclei
    • 

    corecore