84 research outputs found

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy

    Full text link
    Graphene based sheets have stimulated great interest due to their superior mechanical, electrical and thermal properties. A general visualization method that allows quick observation of these single atomic layers would be highly desirable as it can greatly facilitate sample evaluation and manipulation, and provide immediate feedback to improve synthesis and processing strategies. Here we report that graphene based sheets can be made highly visible under a fluorescence microscope by quenching the emission from a dye coating, which can be conveniently removed afterwards by rinsing without disrupting the sheets. Current imaging techniques for graphene based sheets rely on the use of special substrates. In contrast, the fluorescence quenching mechanism is no longer limited by the types of substrates. Graphene, reduced graphene oxide, or even graphene oxide sheets deposited on arbitrary substrates can now be readily visualized by eye with good contrast for layer counting. Direct observation of suspended sheets in solution was also demonstrated. The fluorescence quenching microscopy offers unprecedented imaging flexibility and could become a general tool for characterizing graphene based materials.Comment: J. Am. Chem. Soc., Article ASA

    Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer

    Full text link

    Chemistry of Hydrophobic Sand

    No full text
    This 35-page learning module from the Northeast Technological Education Center (NEATEC) provides an introduction to the chemistry of hydrophobic sand. After reviewing the document, students should be able to make their own hydrophobic sand by coating regular beach sand particles with silicone spray to make them hydrophobic, investigate the interaction of normal beach sand and hydrophobic sand with water by comparing how they differ when water is added to sand and when sand is added to water, observe hydrophobicity, investigate properties of normal beach sand and hydrophobic sand by adding sand to water and oil, and understand how polarity plays a role in different sand characteristics. New York state common core learning standards, lesson materials, an assessment, resource information for instructors, background information, activities, and an answer key are provided.&nbsp
    corecore