920 research outputs found

    catena-Poly[[dimethyl­bis­(thio­cyanato-ÎșN)tin(IV)]-ÎŒ-(4,4â€Č-bipyridine-Îș2 N:Nâ€Č)]

    Get PDF
    The title dimethyl­tin diisothio­cyanate adduct of 4,4â€Č-bipyridine, [Sn(CH3)2(NCS)2(C10H8N2)]n, adopts a chain motif in which the N-heterocycle functions as a bridge to adjacent all-trans octa­hedrally coordinated tin atoms. The SnIV atom lies on a special position of 2/m site symmetry, the methyl C atom on a special position of 2 site symmetry, and the thio­cyanate and 4,4â€Č-bipyridine on a special position of m site symmetry

    Quinine doped hybrid sol-gel coatings for wave guiding and optical applications

    Get PDF
    Pure and quinine doped silica coatings have been prepared over sodalime glasses. The coatings were consolidated at low temperature (range 60-180 A degrees C) preserving optical activity of quinine molecule. We designed a device to test the guiding properties of the coatings. We confirmed with this device that light injected in pure silica coatings is guided over distances of meters while quinine presence induces isotropic photoluminescence. With the combined use of both type of coatings, it is possible to design light guiding devices and illuminate regions in glass elements without electronic circuits

    Sol-Gel-Derived Hydroxyapatite-Carbon Nanotube/Titania Coatings on Titanium Substrates

    Get PDF
    In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO2) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO2 coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 ÎŒm. The bonding strength of the HA-CNT/TiO2 coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO2 double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO2 coatings on Ti substrates might be a promising material for bone replacement

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.

    Get PDF
    Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling

    Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater

    Get PDF
    Unique properties of micro- and nanobubbles (MNBs), such as a high adsorption of impurities on their surface, are difficult to verify because MNBs are too small to observe directly. We thus used a transmission electron microscope (TEM) with the freeze-fractured replica method to observe oxygen (O2) MNBs in solutions. MNBs in pure water and in 1% NaCl solutions were spherical or oval. Their size distribution estimated from TEM images close to that of the original solution is measured by light-scattered methods. When we applied this technique to the observation of O2 MNBs formed in the wastewater of a sewage plant, we found the characteristic features of spherical MNBs that adsorbed surrounding impurity particles on their surface

    In vitro antiproliferative activity of partially purified Trigona laeviceps propolis from Thailand on human cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancers are some of the leading causes of human deaths worldwide and their relative importance continues to increase. Since an increasing proportion of cancer patients are acquiring resistance to traditional chemotherapeutic agents, it is necessary to search for new compounds that provide suitable specific antiproliferative affects that can be developed as anticancer agents. Propolis from the stingless bee, <it>Trigona laeviceps</it>, is one potential interesting source that is widely available and cultivatable (as bee hives) in Thailand.</p> <p>Methods</p> <p>Propolis (90 g) was initially extracted by 95% (v/v) ethanol and then solvent partitioned by sequential extractions of the crude ethanolic extract with 40% (v/v) MeOH, CH<sub>2</sub>Cl<sub>2 </sub>and hexane. After solvent removal by evaporation, each extract was solvated in DMSO and assayed for antiproliferative activity against five cancer (Chago, KATO-III, SW620, BT474 and Hep-G2) and two normal (HS27 fibroblast and CH-liver) cell lines using the MTT assay. The cell viability (%) and IC<sub>50 </sub>values were calculated.</p> <p>Results</p> <p>The hexane extract provided the highest <it>in vitro </it>antiproliferative activity against the five tested cancer cell lines and the lowest cytotoxicity against the two normal cell lines. Further fractionation of the hexane fraction by quick column chromatography using eight solvents of increasing polarity for elution revealed the two fractions eluted with 30% and 100% (v/v) CH<sub>2</sub>Cl<sub>2 </sub>in hexane (30DCM and 100DCM, respectively) had a higher anti-proliferative activity. Further fractionation by size exclusion chromatography lead to four fractions for each of 30DCM and 100DCM, with the highest antiproliferative activity on cancer but not normal cell lines being observed in fraction# 3 of 30DCM (IC<sub>50 </sub>value of 4.09 - 14.7 ÎŒg/ml).</p> <p>Conclusions</p> <p><it>T. laeviceps </it>propolis was found to contain compound(s) with antiproliferative activity <it>in vitro </it>on cancer but not normal cell lines in tissue culture. The more enriched propolis fractions typically revealed a higher antiproliferative activity (lower IC<sub>50 </sub>value). Overall, propolis from Thailand may have the potential to serve as a template for future anticancer-drug development.</p

    Calorimetric study of geopolymer binders based on natural pozzolan

    Get PDF
    This paper investigates the kinetics of geopolymerisation in an inorganic polymeric binder based on a natural pozzolan. The heat released by the exothermic geopolymerisation reaction process is monitored under isothermal temperature conditions, maintained in a differential scanning calorimeter using a water circulation cell. Calorimetric data are obtained isothermally at 65, 75, and 85 °C with various Na2O/Al2O3 and SiO2/Na2O molar ratios and in the presence and absence of small amounts of calcium aluminate cement (used as an efflorescence control admixture in these binder systems). The first stage of reaction, which is rapid and strongly exothermic, is shortened as the temperature increases. The total heat of reaction increases in the mixes containing calcium aluminate cement, but the apparent activation energy calculated using a pseudo-first-order reaction model is lower than without added calcium aluminate cement. At a constant overall SiO2/Na2O molar ratio, the apparent activation energy is decreased as the Na2O/Al2O3 molar ratio increases. Calcium aluminate cement, therefore, reduces the minimum energy required to initiate geopolymerisation reactions of this natural pozzolan and facilitates the progress of the reactions which lead to formation of a cementitious product

    A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin

    Full text link
    Our purpose was to improve the thermal, mechanical and optimal properties of an epoxy bioresin using optimum hybrid natural pigments previously synthesised in our lab. Next, we searched for the best combinations of factors in the synthesis of natural hybrid nanopigments and then incorporated them into the bioresin. We combined three structural modifiers in the nanopigment synthesis, surfactant, coupling agent (silane) and a mordant salt (alum), selected to replicate mordant textile dyeing with natural dyes. We used Taguchi s design L8 to seek final performance optimisation. We selected three natural dyes, chlorophyll, beta-carotene and beetroot extract, and used two laminar nanoclay types, montmorillonite and hydrotalcite. The thermal, mechanical and colorimetric characterisation of the composite obtained by mixing natural hybrid nanopigments (bionanocomposite) was made. The natural dye interactions with both nanoclays improved the thermal stabilities, colour performance and UV VIS light exposure stability of natural dyes and bioresins. The best bionanocomposite materials were found in an acidic pH [3, 4] environment and by modifying nanoclays with mordant and surfactant during the nanopigment synthesis processWe thank the Spanish Ministry of Economy and Competitiveness for funding Projects DPI2011-30090-C02-02 and DPI2015-68514-R.MicĂł Vicent, B.; JordĂĄn NĂșñez, J.; Martinez Verdu, FM.; Balart Gimeno, RA. (2017). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science. 52(2):889-898. https://doi.org/10.1007/s10853-016-0384-8S889898522Majdzadeh-Ardakani K, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70(10):1557–1563. doi: 10.1016/j.compscitech.2010.05.022Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72(5):608–615. doi: 10.1016/j.compscitech.2012.01.005Acharya H, Srivastava SK, Bhowmick AK (2007) Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: structural characterization and properties. Compos Sci Technol 67(13):2807–2816. doi: 10.1016/j.compscitech.2007.01.030Marras SI, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polymer J 43(6):2191–2206. doi: 10.1016/j.eurpolymj.2007.03.013LeszczyƄska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453(2):75–96. doi: 10.1016/j.tca.2006.11.002Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915. doi: 10.1023/a:1022308705231Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants—a review. Fire Mater 24(1):45–52. doi: 10.1002/(sici)1099-1018(200001/02)24:13.0.co;2-sRay SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002Gao D, Li R, Lv B, Ma J, Tian F, Zhang J (2015) Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Compos B Eng 77:329–337. doi: 10.1016/j.compositesb.2015.03.061LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29. doi: 10.1016/s0169-1317(99)00017-4Karuntarut Sermsantiwanita SP (2012) Preparation of bio-based nanocomposite emulsions: effect of clay type. Prog Org Coat 74:660–666Pascual J, Fages E, Fenollar O, Garcia D, Balart R (2009) Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym Bull 62(3):367–380. doi: 10.1007/s00289-008-0018-7BeltrĂĄn MI, Benavente V, Marchante V, Marcilla A (2013) The influence of surfactant loading level in a montmorillonite on the thermal, mechanical and rheological properties of EVA nanocomposites. Appl Clay Sci 83–84:153–161. doi: 10.1016/j.clay.2013.08.028Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72(2):305–313. doi: 10.1016/j.compscitech.2011.11.018Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536. doi: 10.1016/j.tifs.2010.07.008Huskić M, Ćœigon M, Ivanković M (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Appl Clay Sci 85:109–115. doi: 10.1016/j.clay.2013.09.004Osman MA, Rupp JEP, Suter UW (2005) Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46(19):8202–8209. doi: 10.1016/j.polymer.2005.06.101Wang H, Fang P, Chen Z, Wang S, Xu Y, Fang Z (2008) Effect of silane grafting on the microstructure of high-density polyethylene/organically modified montmorillonite nanocomposites. Polym Int 57(1):50–56. doi: 10.1002/pi.2310Montgomery DC (2008) Design and analysis of experiments. Wiley, HobokenBaena-Murillo E, MicĂł-Vicent B, MartĂ­nez-VerdĂș FM (2013) Method for the synthesis of nanostructured hybrid pigments having properties that can be syntonized. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013110841&recNum=229&docAn=ES2013070026&queryString=(ANA:ES)&maxRec=25813Kohno Y, Inagawa M, Ikoma S, Shibata M, Matsushima R, Fukuhara C, Tomita Y, Maeda Y, Kobayashi K (2011) Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Appl Clay Sci 54(3):202–205. doi: 10.1016/j.clay.2011.09.001Kaneko Y, Iyi N, Bujdak J, Sasai R, Fujita T (2004) Effect of layer charge density on orientation and aggregation of a cationic laser dye incorporated in the interlayer space of montmorillonites. J Colloid Interface Sci 269(1):22–25. doi: 10.1016/s0021-9797(03)00602-7Silva AA, Dahmouche K, Soares BG (2011) Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Appl Clay Sci 54(2):151–158. doi: 10.1016/j.clay.2011.08.002Park S-J, Kim B-J, Seo D-I, Rhee K-Y, Lyu Y-Y (2009) Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater Sci Eng A 526(1–2):74–78. doi: 10.1016/j.msea.2009.07.023Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39(5):922–932. doi: 10.1016/j.watres.2004.12.008Fahn R, Fenderl K (1983) Reaction-products of organic-dye molecules with acid-treated montmorillonite. Clay Miner 18(4):447–458. doi: 10.1180/claymin.1983.018.4.10Kohno Y, Totsuka K, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J Colloid Interface Sci 337(1):117–121. doi: 10.1016/j.jcis.2009.04.065Capilla P, Pujol J (2002) Fundamentos de ColorimetrĂ­a. Universitat de ValenciaGilabert EJ, VerdĂș FMM (2007) Medida de la luz y el color. Editorial de la UPV. In: Color psicofĂ­sico, pp 185–221Zhao H, Nagy KL (2004) Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J Colloid Interface Sci 274(2):613–624. doi: 10.1016/j.jcis.2004.03.05
    • 

    corecore