41 research outputs found

    Evaluation of Resazurin Microtiter Plate Assay and HPLCPhotodiode Array Analysis of the Roots of Asparagus adscendens

    Get PDF
    Asparagus adscendens Roxb. (Asparagaceae), is native to the Himalayas. The present study, for the first time, was undertaken to explore the antimicrobial potential, to determine the minimum inhibitory concentration (MIC) values of the methanol extract of the roots of Asparagus adscendens and its solid phase extraction (SPE) fractions by using resazurin microtiter assay (REMA) against gram positive and negative bacterial registered strains and to carry out HPLC-Photodiode array analysis of the SPE fractions. The methanol extract and all SPE exhibited considerable level of antibacterial potential against gram-positive bacteria (MIC: 2.5-0.009 mg/mL) than against gram-negative bacteria (MIC: 1.25-2.5 mg/mL). The use of microtiter plates has the advantage of lower cost, fast and quantitative results. Like other Asparagus species, the presence of phenolic compounds in all SPE fractions was evident in the HPLC-PDA data

    Impact on arsenic exposure of a growing proportion of untested wells in Bangladesh

    Get PDF
    In many areas of Bangladesh, it has been more than six years since a national campaign to test tubewells for arsenic (As) was conducted. Many households therefore draw their water for drinking and cooking from untested wells. A household drinking water survey of 6646 households was conducted in Singair upazilla of Bangladesh. A subset of 795 untested wells used by 1000 randomly selected households was tested in the field by trained village workers with the Hach EZ kit, using an extended reaction time of 40 min, and in the laboratory by high-resolution inductively-coupled plasma-mass spectrometry (HR ICP-MS). The household survey shows that more than 80% of the wells installed since the national testing campaign in this area were untested. Less than 13% of the households with untested wells knew where a low-As well was located near their home. Village workers using the Hach EZ kit underestimated the As content of only 4 out of 795 wells relative to the Bangladesh standard. However, the As content of 168 wells was overestimated relative to the same threshold. There is a growing need for testing tubewells in areas of Bangladesh where As concentrations in groundwater are elevated. This could be achieved by village workers trained to use a reliable field kit. Such an effort would result in a considerable drop in As exposure as it increases the opportunities for well switching by households

    Arabidopsis leucine-rich repeat receptor–like kinase NILR1 is required for induction of innate immunity to parasitic nematodes

    Get PDF
    Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annually. An effective plant defence against pathogens relies on the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localised receptors leading to the activation of PAMP-triggered immunity (PTI). Extensive studies have been conducted to characterise the role of PTI in various models of plant-pathogen interactions. However, far less is known about the role of PTI in roots in general and in plant-nematode interactions in particular. Here we show that nematode-derived proteinaceous elicitor/s is/are capable of inducing PTI in Arabidopsis in a manner dependent on the common immune co-receptor BAK1. Consistent with the role played by BAK1, we identified a leucine-rich repeat receptor-like kinase, termed NILR1 that is specifically regulated upon infection by nematodes. We show that NILR1 is essential for PTI responses initiated by nematodes and nilr1 loss-of-function mutants are hypersusceptible to a broad category of nematodes. To our knowledge, NILR1 is the first example of an immune receptor that is involved in induction of basal immunity (PTI) in plants or in animals in response to nematodes. Manipulation of NILR1 will provide new options for nematode control in crop plants in future

    Understanding Communication of Sustainability Reporting: Application of Symbolic Convergence Theory (SCT)

    Get PDF
    The purpose of this paper is to investigate the nature of rhetoric and rhetorical strategies that are implicit in the standalone sustainability reporting of the top 24 companies of the Fortune 500 Global. We adopt Bormann’s (Q J Speech 58(4):396–407, 1972) SCT framework to study the rhetorical situation and how corporate sustainability reporting (CSR) messages can be communicated to the audience (public). The SCT concepts in the sustainability reporting’s communication are subject to different types of legitimacy strategies that are used by corporations as a validity and legitimacy claim in the reports. A content analysis has been conducted and structural coding schemes have been developed based on the literature. The schemes are applied to the SCT model which recognizes the symbolic convergent processes of fantasy among communicators in a Society. The study reveals that most of the sample companies communicate fantasy type and rhetorical vision in their corporate sustainability reporting. However, the disclosure or messages are different across locations and other taxonomies of the SCT framework. This study contributes to the current CSR literature about how symbolic or fantasy understandings can be interpreted by the users. It also discusses the persuasion styles that are adopted by the companies for communication purposes. This study is the theoretical extension of the SCT. Researchers may be interested in further investigating other online communication paths, such as human rights reports and director’s reports

    Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues and future prospects

    Get PDF
    Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physico-chemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metals-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches, evaluate their efficacy to remove toxic metals from our natural environment, explore current scientific progresses, field experiences and sustainability issues and revise world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in 21st century

    Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling

    Get PDF
    This work focuses on thermodynamic analysis of the autothermal reforming of palm empty fruit bunch (PEFB) bio-oil for the production of hydrogen and syngas. PEFB bio-oil composition was simulated using bio-oil surrogates generated from a mixture of acetic acid, phenol, levoglucosan, palmitic acid and furfural. A sensitivity analysis revealed that the hydrogen and syngas yields were not sensitive to actual bio-oil composition, but were determined by a good match of molar elemental composition between real bio-oil and surrogate mixture. The maximum hydrogen yield obtained under constant reaction enthalpy and pressure was about 12 wt% at S/C = 1 and increased to about 18 wt% at S/C = 4; both yields occurring at equivalence ratio Φ of 0.31. The possibility of generating syngas with varying H2 and CO content using autothermal reforming was analysed and application of this process to fuel cells and Fischer-Tropsch synthesis is discussed. Using a novel simple modelling methodology, reaction mechanisms were proposed which were able to account for equilibrium product distribution. It was evident that different combinations of reactions could be used to obtain the same equilibrium product concentrations. One proposed reaction mechanism, referred to as the ‘partial oxidation based mechanism’ involved the partial oxidation reaction of the bio-oil to produce hydrogen, with the extent of steam reforming and water gas shift reactions varying depending on the amount of oxygen used. Another proposed mechanism, referred to as the ‘complete oxidation based mechanism’ was represented by thermal decomposition of about 30% of bio-oil and hydrogen production obtained by decomposition, steam reforming, water gas shift and carbon gasification reactions. The importance of these mechanisms in assisting in the eventual choice of catalyst to be used in a real ATR of PEFB bio-oil process was discussed

    Mechanical properties of glass composites based on knitted preforms with inlays

    Get PDF
    An attempt has been made to improve the mechanical properties of the composites with knitted performs by introducing horizontal strands in the course direction in a flat-bed knitting machine. Flat knitted performs were produced with different proportions of axial inlay strands and the composite laminates were prepared using the vacuum-assisted resin transfer moulding technique. It is observed that the introduction of inlay strands influences the structure of the knitted preform by increasing course density, wale density and thickness. This result in the increased anisotropic behaviour of the composite laminate showing increased strength in the course direction and decreased strength in the wale direction. The flexural strength of the knitted preform composites increases in both wale and course directions with the introduction of inlay strands. Laminates from preforms with two inlays exhibit overall improved impact properties whereas those from preforms with one inlay show higher impact damage tolerance index. These observations are explained in terms of the change in fibre architecture brought about by the introduction of the inlay strands
    corecore