169 research outputs found

    Distortion and instability compensation with deep learning for rotational scanning endoscopic optical coherence tomography

    Get PDF
    Optical Coherence Tomography (OCT) is increasingly used in endoluminal procedures since it provides high-speed and high resolution imaging. Distortion and instability of images obtained with a proximal scanning endoscopic OCT system are significant due to the motor rotation irregularity, the friction between the rotating probe and outer sheath and synchronization issues. On-line compensation of artefacts is essential to ensure image quality suitable for real-time assistance during diagnosis or minimally invasive treatment. In this paper, we propose a new online correction method to tackle both B-scan distortion, video stream shaking and drift problem of endoscopic OCT linked to A-line level image shifting. The proposed computational approach for OCT scanning video correction integrates a Convolutional Neural Network (CNN) to improve the estimation of azimuthal shifting of each A-line. To suppress the accumulative error of integral estimation we also introduce another CNN branch to estimate a dynamic overall orientation angle. We train the network with semi-synthetic OCT videos by intentionally adding rotational distortion into real OCT scanning images. The results show that networks trained on this semi-synthetic data generalize to stabilize real OCT videos, and the algorithm efficacy is demonstrated on both ex vivo and in vivo data, where strong scanning artifacts are successfully corrected. (c) 2022 The Authors. Published by Elsevier B.V

    Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept

    Get PDF
    Ever since Rudolf Virchow in 1858 publicly announced his apprehension of neuroglia being a true connective substance, this concept has been evolving to encompass a heterogeneous population of cells with various forms and functions. We briefly compare the 19th–20th century perspectives on neuroglia with the up-to-date view of these cells as an integral, and possibly integrating, component of brain metabolism and signalling in heath and disease. We conclude that the unifying property of otherwise diverse functions of various neuroglial cell sub-types is to maintain brain homoeostasis at different levels, from whole organ to molecular

    Role of early second-trimester uterine artery Doppler screening to predict small-for-gestational-age babies in nulliparous women

    Get PDF
    Background Trophoblastic invasion of the uterine spiral arteries substantially increases compliance to accommodate increased blood flow to the placenta. Failure of this process impedes uterine artery blood flow, and this may be detected by uterine artery Doppler flow studies. However, the clinical utility of uterine artery Doppler flow studies in the prediction of adverse pregnancy outcomes in a general population remains largely unknown. Objective We sought to determine the utility of early second-trimester uterine artery Doppler studies as a predictor of small-for-gestational-age neonates. Study Design Nulliparous women with a viable singleton pregnancy were recruited during their first trimester into an observational prospective cohort study at 8 institutions across the United States. Participants were seen at 3 study visits during pregnancy and again at delivery. Three indices of uterine artery Doppler flow (resistance index, pulsatility index, and diastolic notching) were measured in the right and left uterine arteries between 16 weeks 0 days’ and 22 weeks 6 days’ gestation. Test characteristics for varying thresholds in the prediction of small for gestational age (defined as birthweight <5th percentile for gestational age [Alexander growth curve]) were evaluated. Results Uterine artery Doppler indices, birthweight, and gestational age at birth were available for 8024 women. Birthweight <5th percentile for gestational age occurred in 358 (4.5%) births. Typical thresholds for the uterine artery Doppler indices were all associated with birthweight <5th percentile for gestational age (P < .0001 for each), but the positive predictive values for these cutoffs were all <15% and areas under receiver operating characteristic curves ranged from 0.50-0.60. Across the continuous scales for these measures, the areas under receiver operating characteristic curves ranged from 0.56-0.62. Incorporating maternal age, early pregnancy body mass index, race/ethnicity, smoking status prior to pregnancy, chronic hypertension, and pregestational diabetes in the prediction model resulted in only modest improvements in the areas under receiver operating characteristic curves ranging from 0.63-0.66. Conclusion In this large prospective cohort, early second-trimester uterine artery Doppler studies were not a clinically useful test for predicting small-for-gestational-age babies

    An update on molecular cat allergens: Fel d 1 and what else? Chapter 1: Fel d 1, the major cat allergen

    Get PDF
    Background: Cats are the major source of indoor inhalant allergens after house dust mites. The global incidence of cat allergies is rising sharply, posing a major public health problem. Ten cat allergens have been identified. The major allergen responsible for symptoms is Fel d 1, a secretoglobin and not a lipocalin, making the cat a special case among mammals. Main body: Given its clinical predominance, it is essential to have a good knowledge of this allergenic fraction, including its basic structure, to understand the new exciting diagnostic and therapeutic applications currently in development. The recent arrival of the component-resolved diagnosis, which uses molecular allergens, represents a unique opportunity to improve our understanding of the disease. Recombinant Fel d 1 is now available for in vitro diagnosis by the anti-Fel d 1 specific IgE assay. The first part of the review will seek to describe the recent advances related to Fel d 1 in terms of positive diagnosis and assessment of disease severity. In daily practice, anti-Fel d 1 IgE tend to replace those directed against the overall extract but is this attitude justified? We will look at the most recent arguments to try to answer this question. In parallel, a second revolution is taking place thanks to molecular engineering, which has allowed the development of various forms of recombinant Fel d 1 and which seeks to modify the immunomodulatory properties of the molecule and thus the clinical history of the disease via various modalities of anti-Fel d 1-specific immunotherapy. We will endeavor to give a clear and practical overview of all these trends

    Absence of Dystrophin Related Protein-2 disrupts Cajal bands in a patient with Charcot-Marie-Tooth disease

    Get PDF
    Using exome sequencing in an individual with Charcot-Marie-Tooth disease (CMT) we have identified a mutation in the X-linked dystrophin-related protein 2 (DRP2) gene. A 60-year-old gentleman presented to our clinic and underwent clinical, electrophysiological and skin biopsy studies. The patient had clinical features of a length dependent sensorimotor neuropathy with an age of onset of 50 years. Neurophysiology revealed prolonged latencies with intermediate conduction velocities but no conduction block or temporal dispersion. A panel of 23 disease causing genes was sequenced and ultimately was uninformative. Whole exome sequencing revealed a stop mutation in DRP2, c.805C>T (Q269*). DRP2 interacts with periaxin and dystroglycan to form the periaxin-DRP2-dystroglycan complex which plays a role in the maintenance of the well-characterized Cajal bands of myelinating Schwann cells. Skin biopsies from our patient revealed a lack of DRP2 in myelinated dermal nerves by immunofluorescence. Furthermore electron microscopy failed to identify Cajal bands in the patient's dermal myelinated axons in keeping with ultrastructural pathology seen in the Drp2 knockout mouse. Both the electrophysiologic and dermal nerve twig pathology support the interpretation that this patient's DRP2 mutation causes characteristic morphological abnormalities recapitulating the Drp2 knockout model and potentially represents a novel genetic cause of CMT

    Relations des leucocytes avec les cellules fixes et formation des cellules en �pieu dans la corn�e.

    No full text

    Myelin-Figuren aus Dr�senhaaren vonVerbascum Blattaria

    No full text
    • …
    corecore