
Medical Image Analysis 77 (2022) 102355 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Distortion and instability compensation with deep learning for 

rotational scanning endoscopic optical coherence tomography 

Guiqiu Liao 

a , b , ∗, Oscar Caravaca-Mora 

a , Benoit Rosa 

a , Philippe Zanne 

a , Diego Dall’Alba 

b , 
Paolo Fiorini b , Michel de Mathelin 

a , Florent Nageotte 

a , Michalina J. Gora 

a 

a ICube, UMR 7357 CNRS-University of Strabourg, Strasbourg, France 
b Department of Computer Science, University of Verona, Verona, Italy 

a r t i c l e i n f o 

Article history: 

Received 28 June 2021 

Revised 22 December 2021 

Accepted 6 January 2022 

Available online 22 January 2022 

MSC: 

41A05 

41A10 

65D05 

65D17 

Keywords: 

Optical coherence tomography 

Endoscopic catheter 

Image correction 

Video stabilization 

Convolutional neural network 

a b s t r a c t 

Optical Coherence Tomography (OCT) is increasingly used in endoluminal procedures since it provides 

high-speed and high resolution imaging. Distortion and instability of images obtained with a proximal 

scanning endoscopic OCT system are significant due to the motor rotation irregularity, the friction be- 

tween the rotating probe and outer sheath and synchronization issues. On-line compensation of artefacts 

is essential to ensure image quality suitable for real-time assistance during diagnosis or minimally inva- 

sive treatment. In this paper, we propose a new online correction method to tackle both B-scan distor- 

tion, video stream shaking and drift problem of endoscopic OCT linked to A-line level image shifting. The 

proposed computational approach for OCT scanning video correction integrates a Convolutional Neural 

Network (CNN) to improve the estimation of azimuthal shifting of each A-line. To suppress the accumu- 

lative error of integral estimation we also introduce another CNN branch to estimate a dynamic overall 

orientation angle. We train the network with semi-synthetic OCT videos by intentionally adding rotational 

distortion into real OCT scanning images. The results show that networks trained on this semi-synthetic 

data generalize to stabilize real OCT videos, and the algorithm efficacy is demonstrated on both ex vivo 

and in vivo data, where strong scanning artifacts are successfully corrected. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Optical coherence tomography (OCT) ( Huang et al., 1991 ) is in- 

reasingly used in biomedical and clinical imaging because of its 

igh-speed and high resolution optical sectioning ( Yonetsu et al., 

013 ). A one-dimensional (1D) image, called A-line, is obtained by 

ointing an OCT light beam onto the tissue. The OCT light propa- 

ates up to few millimeters within the tissue and is reflected back 

y the internal tissue structure to the imaging system. A stan- 

ard two-dimensional (2D) OCT frame, called B-scan, is created 

y moving the light beam in a plane. In ophthalmology, which 

s the most common application of OCT, the OCT beam is typi- 

ally raster scanned over a square field of view to create a three- 

imensional (3D) volume. 2D images are displayed in real time 

nd the volume is also typically visualized as an en-face projection 

o provide orientation and to follow disease progression longitudi- 

ally ( Costello, 2017 ). When combined with a miniaturized optical 

atheter, OCT light can also be delivered into the cardiovascular, 
∗ Corresponding author. 
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espiratory or digestive systems for imaging of internal structures 

 Gora et al., 2017 ). Such catheters usually require an outer diame- 

er smaller than 2 mm and a length of up to 2 m. To enable vol-

metric imaging of tubular organs, in the majority of the designs, 

 side-viewing micro-optics is simultaneously rotated and pulled 

ack within a surrounding static sheath to create a helical scan. 

n cardiology, 2D radial OCT frames are displayed in real-time dur- 

ng the longitudinal pullback to assist cardiologists in intravascular 

tent strut placement ( Nam et al., 2016 ). In gastroenterology, OCT 

rames are also reviewed in real-time to find suspicious lesions 

nd consequently to guide biopsy collection ( Suter et al., 2014 ). Re- 

ently, real-time OCT guidance during endoscopic submucosal dis- 

ection has been proposed ( Mora et al., 2020 ). 

The quality of beam scanning in endoscopic OCT strongly 

epends on the actuation mechanism. To effectuate the he- 

ical motion of the probe, a scanning device can be placed 

ither at the proximal side (outside of the patient) ( Nam 

t al., 2016; van Soest et al., 2008; Ahsen et al., 2014; Uribe- 

atarroyo and Bouma, 2015 ) or at the distal end ( Tran et al.,

004; Wang et al., 2013; Herz et al., 2004 ). Compared with 

istal-scanning OCT systems, proximal-scanning probes are more 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Illustration of distortion and instability in endoscopic OCT systems. First column: a selected reference IVOCT frame ( Wang et al., 2015 ) with considerable geometry 

accuracy. Middle column: An OCT frame distorted by stretch-shrink A-line level orientation error. Third column: Situation when both distortion, shaking and drift artifacts 

exist. To highlight presence of artifacts, three consecutive frames were assigned to one of three channels of the Red, Green& Blue (RGB) image and overlapped (third column). 
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ompact ( Gora et al., 2013 ) and easier to be miniaturized 

 Abouei et al., 2018 ). 

Both scanning approaches typically suffer from image distor- 

ions, which hamper image reconstruction and interpretation. Such 

istortions are often referred to as Non-Uniform Rotational Dis- 

ortion (NURD) in the literature, while in fact NURD encompasses 

everal distinct phenomena. Within-frame stretch and shrink dis- 

ortions are an A-line level rotation non-linearity within a B-scan 

mage in the polar domain ( Mavadia-Shukla et al., 2020; van Soest 

t al., 2008; Ahsen et al., 2014; Uribe-Patarroyo and Bouma, 2015 ). 

n proximal scanning OCT, they are usually caused by mechanical 

riction during bending of the catheter, which in turn affects the 

ransmission of rotation from the proximal actuator to the distal 

ocusing optics typically realized using a torque coil. In distal scan- 

ing, it is usually much less prominent and is typically linked to 

he mechanical design and short term stability of the motor speed. 

etween-frames shaking and drift distortions are present in both 

roximal and distal scanning approaches, and are caused by vari- 

tions of the motor speed (both in the proximal actuator or at 

he distal tip), and/or by synchronization errors between the ac- 

uisition of images and the scanning speed. Such synchronization 

roblems are also common in raster scanning systems ( Ricco et al., 

009 ). 

Within-frame and between-frames distortion/artifacts reduce 

he image quality and introduce geometry changes (see Fig. 1 ), 

hich impair correct recognition and diagnosis of anatomical 

tructures of interest. Because it is almost impossible to elimi- 

ate all these artifacts by hardware improvements (i.e. the fric- 

ion between the rotational optical components and the protect- 

ng sheath cannot be completely eliminated), computational ap- 

roaches are required to correct the raw images acquired by 

CT systems. Earlier than for OCT, NURD was investigated in 

ntra-vascular ultrasound (IVUS) ( Sathyanarayana, 2006; Kawase 

t al., 2007; Gatta et al., 2009 ). IVUS is a standard of care

or cardiovascular imaging that also requires rotational scanning. 

n the work of Kawase et al. (2007) frequency analysis of the 

exture of the IVUS image was used to estimate the rotational 

peed. Cross-correlations between image blocks in different IVUS 

rames was used to track image appearance changes caused by 

URD ( Gatta et al., 2009 ). This local feature, marker-free match- 
2 
ng based method for IVUS was eventually adapted to OCT, using 

-line distance ( van Soest et al., 2008 ) or image block correlation 

 Uribe-Patarroyo and Bouma, 2015; Abouei et al., 2018 ). These iter- 

tive matching based methods, however, suffer from accumulating 

esidual error. Therefore they cannot track the A-line level position 

rror for long scans and are not applicable to the drift problem. 

owever, the between-frames distortion can be solved by provid- 

ng a physical reference point in each B-scan of the frame stream. 

hsen et al. (2014) achieved that by adding extrinsic markers on 

he OCT sheath, and tracking the overall shifting with image fea- 

ures of the makers. However, the markers block the OCT light and 

hus remove information about tissue. Intra-vascular stents can 

lso be used as landmarks that help to register the rotational dis- 

ortion in OCT pullback videos, which makes this method only ap- 

licable in stent strut assessment tasks ( Ughi et al., 2012 ). Recently, 

 correction algorithm based on space-frequency analysis was pro- 

osed for endoscopic OCT to remove repeated A-lines caused by 

n extreme occurrence of the stretch-shrink distortion, called stick- 

lip effect of the torque coil ( Mavadia-Shukla et al., 2020 ). How- 

ver, this algorithm is not designed for stretch and shrink distor- 

ion when the rotation non-linearity is not so strong and no re- 

eated A-lines can be seen. 

In the computer vision field, deep learning based methods have 

een applied to solve off-line or on-line white light camera video 

nstability problems ( Wang et al., 2018; Huang et al., 2017; Gast 

nd Roth, 2019 ), with state of the art efficiency. Deep learning has 

een recently applied to OCT image processing, by using Convolu- 

ional Neural Network (CNN) for tissue layer segmentation ( van der 

utten et al., 2019; Li et al., 2019; Yong et al., 2017 ), classifica-

ion ( van der Putten et al., 2020 ) and cancer detection ( Zeng et al.,

020 ), but not for OCT video stabilization. 

In this article, a CNN based method is proposed to reduce shak- 

ng and drift NURD artifacts in OCT videos. While it is not fo- 

used on stretch-shrink , such artifacts may also be eliminated if 

hey are transient. We introduce a dual-branch architecture to es- 

imate the A-line level positions errors with respect to a given 

eference frame (see Fig. 2 ). In the first branch, to estimate a A- 

ine level shifting vector, a correlation matrix between axial scan- 

ing lines in the latest image and the previous one is calculated 

 van Soest et al., 2008; Abouei et al., 2018; Gatta et al., 2009 ).
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Fig. 2. Scheme of the proposed two-branch algorithm architecture for rotational distortion warping vector estimation. Branch (A) in blue dashed block estimates the shifting 

vector with an input of image pair, and branch (B) in red dashed block estimates the group rotation from the newest frame to reference with an image array as input. 
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nspired by the boundary contour detection algorithms based on 

NN ( Maninis et al., 2017 ), we designed a network to find an op-

imal path within the computed correlation matrix, which repre- 

ents the shifting angle of each individual A-line. A similar prob- 

em can be found in the inertial navigation field, where the ro- 

ation angle is iteratively computed with data from a gyroscope. 

he gyroscope provides a type of relative measurement and in- 

roduces accumulating error. A typical solution for this problem is 

o fuse direct angular measurements (coming from an accelerom- 

ter) with the indirect measurements (gyroscope) ( Mahony et al., 

005 ). Inspired by this, another CNN branch estimating overall ori- 

ntation is separated from the shifting vector estimation. The net- 

ork design of this orientation/group rotation estimation is also 

nspired by a method that applied deep neural network to esti- 

ate homographic transformation for sports camera video stabi- 

ization ( Wang et al., 2018 ). A multi-scale estimation strategy using 

oth local and global features is applied, which has been designed 

or estimating optical flow between frames in video sequences ( Ilg 

t al., 2017; Dosovitskiy et al., 2015 ). The shifting vector and the 

roup rotation estimation branches are running in parallel and are 

eployed to correct the OCT images online: at a given latest time 

tep k , only past information from time steps [0 , . . . , k ] is needed. 

Training the proposed networks requires a dataset with anno- 

ated, clinically relevant OCT images. Such a dataset is however 

ot readily available, since it is almost impossible to manually 

nnotate the non-uniform shifting for each frame of OCT videos. 

ew reliable approaches exist for generating complex, realistic syn- 

hetic OCT images. Therefore, we trained our networks with semi- 

ynthetic OCT videos generated by randomly adding realistic warp- 

ng vectors and group rotation values to real OCT images. We then 

eployed the networks for real OCT videos stabilization. 

A summary of our contributions is as follows: 

• We propose a stabilization method to correct geometry infor- 

mation on the fly when the OCT system is capturing scanning 

data, that is beneficial for efficient online diagnosis. 

• A robust deep CNN architecture is designed to estimate the A- 

line level distortion error. 

• A drift compensation method inspired from inertial navigation 

is developed for rotational scanning stabilization. 

• We trained the networks on semi-synthetic scans generated by 

adding distortion to real images, which avoids the need of man- 

ual annotation. 
3 
• We assessed the performance of the proposed method with un- 

seen in vivo pre-clinical and clinical data. 

. Methods 

A rotational scanning OCT catheter captures a continuous 

tream of A-lines. To reconstruct full images (i.e. B-scans), one typ- 

cally makes the assumption that the optical components at the 

istal tip of the fiber are rotating with an ideal constant speed. 

nder this assumption, the OCT data acquisition system arranges H

qually-spaced A-lines to cover a 360 degrees region in polar coor- 

inates. We consider a reference frame F 0 acquired at the start of 

he correction algorithm. 

The newest frame ˜ F k (in this article k indicates the index of 

ewest data or results) is composed of H A-lines A 

i 
k 

( i ∈ [0 , H) ). The

ndex i represents the position of a given A-line A 

i 
k 

in the image in

olar domain. Because of the scanning artifacts, A 

i 
k 

differs from its 

orrect position which should be aligned to A 

j 
0 

in frame F 0 . The 

osition error of A-line A 

i 
k 

is expressed as ε i 
k 

= j − i , and composes

ne element of an error vector P k = [ ε0 
k 

· · · ε i 
k 
· · · εH 

k 
] T . 

OCT video stabilization consists in minimizing the position er- 

or P k of A-lines in the latest raw frame ˜ F k . Note that throughout 

his article, the tilde ̃  , the bar ̄ and the hat ̂  are used to denote 

 raw value (original measurement), a prediction and an estima- 

ion respectively. Given a position error vector P k −1 for the previ- 

us frame and A-line level shifting vector P̄ k between the two raw 

rames ˜ F k −1 and 

˜ F k , each element of the latest A-line position er- 

or P k can be obtained with an iterative computation operation �, 

s follows: 

 

i 
k = �(i ) ( ̄P k , P k −1 ) = P̄ i k + P j 

k −1 
(1) 

j = P̄ i k + i (2) 

Using these definitions, the previously mentioned stretch-shrink, 

haking and drift problems can be described in terms of values in 

he relative/indirect between-frame shifting vector P̄ k (instead of 

sing the direct error vector P k ). One can write P̄ k = �r̄ k 1 + P̄ a,k , 

here 1 is a vector of ones, r̄ k is an overall rotation error with 

espect to the reference frame. The scalar �r̄ k contributes to the 

rame level dynamic shift with respect to the first frame, and the 

ector P̄ a,k is a non-uniform A-line level shifting part. The stretch- 

hrink distortion is represented by P̄ a,k , and constitutes nonlinear 



G. Liao, O. Caravaca-Mora, B. Rosa et al. Medical Image Analysis 77 (2022) 102355 

d

f

b

t

a

i

S

a

w

a

c

e

i

t

r

a

t

2

h

b

t

r

o

m

P

t

e  

O

t

c

C  

t

w

w

r

O

t

t

a

m

f

i  

s

f

v

o

a

2

a

l

v

 

l

W  

l

a  

s

t  

o

m

a

v

i

r

f

t

l

s

W

l

o

w

n

r

3

t

c

a

c

a

a

c

p

S

S

S

s

t

E

w

B

n

w

s

c

d

2

a

p

t

 

p

m

w

r

w

d

isplacement of individual A-lines in the polar domain within one 

rame. On the other hand, the shaking and drift is linked to the 

etween-frames shifting �r̄ k . One should note that it is the varia- 

ion of r̄ k in time (i.e. between frames) that constitutes the shaking 

nd drift phenomenon. Eventually, the position error of each A-line 

n one frame can be expressed as P k = 

∑ k 
n =1 �r̄ n 1 + �( ̄P a,k , P a,k −1 ) . 

imilarly to equation (1) , �( ̄P a,k , P a,k −1 ) is computed from P̄ a, 1 . The 

ccumulation of successive non-zero values will provoke a drift, 

hile quick variations of individual values of �r̄ k from one im- 

ge to the next model the shaking phenomenon. Finally, note that 

omputing P k from the estimated P̄ k could accumulate estimation 

rrors, which could lead to an even more notable drift. This type of 

ssue also exists when iteratively computing the shifting error vec- 

or between latest frame and previous corrected frame, due to the 

esidual correction error. In the following subsection we introduce 

 solution for estimating the A-line level shifting error considering 

hese problems. 

.1. Algorithm pipeline 

The proposed distortion and instability compensation algorithm 

as a two-branch architecture. As shown in Fig. 2 , the upper 

ranch (A) is designed to estimate the non-uniform warping vec- 

or between two consecutive frames. In each iteration of the algo- 

ithm, the latest original OCT image ˜ F k and the previous buffered 

riginal frame ˜ F k −1 enter a correlation module, and a correlation 

atrix M k is calculated. Then a CNN estimates the shifting vector 

 ̄k from M k . One direct way to correct the distortion is to calculate 

he position error vector P k by the iterative computation � (see 

q. 1 ), and then apply each element of P k to shift each A-line of

CT frame ˜ F k . This works for a temporary period, but the estima- 

ion error accumulates along the processing time. 

Similar to how the accelerometers are used to solve the ac- 

umulative error of the gyroscope iterative computation, another 

NN branch (B) (shown in red dashed block of Fig. 2 ) is proposed

o estimate a direct group rotation value r̄ k . Running in parallel 

ith branch (A), the input of the lower branch (B) is composed 

ith the newest frame ˜ F k , previous corrected frame ˆ F k −1 and the 

eference frame F 0 . F 0 is cropped to remove the area outside the 

CT sheath. This allows to take into account only the constant fea- 

ures corresponding to the sheath, which will not be affected by 

he outside environment. The relation between 

˜ F k and 

ˆ F k −1 can 

lso reflect the group rotation and these complete frames provide 

ore features than sheath images. However, using only these two 

rames will introduce an iterative drift. Alternatively, by combin- 

ng the 3 frames as an input, branch (B) can estimate a robust and

mooth group rotation value. 

After each algorithm iteration, the group rotation value r̄ k is 

used with the warping vector P̄ k , and a new estimation of warping 

ector ˆ P k is obtained. ˆ P k is applied to shift each specific axial line 

f ˜ F k to get a corrected frame ˆ F k . Details of the two-branch CNNs 

nd fusion are presented in subsections 2.2 , 2.3 and 2.4. 

.2. A-Line level shifting error interpretation 

To reflect the angular mismatch between the latest frame ˜ F k 
nd the previous frame ˜ F k −1 , we compute the correlation between 

ocal image rectangular patches from the latest frame and the pre- 

ious one. 

As shown in Fig. 3 , the correlation matrix is obtained in the po-

ar domain. One image patch f i with dimension h × W × 1 ( h � H, 

 is the width of the OCT frame, and h depends on the noise

evel of image, for example h = 3 is a practical value) centered 

t index position i ( i ∈ [0 , H) ) of the newest frame ˜ F k is used for

hifting correlation with w image patches f ′ i −w/ 2+ j in a window of 

he previous frame ˜ F k −1 , where j ∈ [0 , w ) . Each shifting operation
4 
utputs one array m i , which composes one row of a correlation 

atrix M k . M k has width w that is equal to the shifting window, 

nd height H equal to the height of ˜ F k in polar coordinates. The 

alue of w is a parameter that depends on the maximum shift- 

ng error, which is discussed in the experiment section. For display 

easons, the correlation matrices shown in this article are trans- 

ormed by 255 × (1 − M k ) (the warped “valley” in the center of 

he demonstration correlation matrix is marked out with a white 

ine in Fig. 3 ). If there is no rotational artifact in data stream, M k 

hould have a straight “valley-like” minimum region in the centre. 

e used the Pearson correlation coefficient o i, j to reflect the simi- 

arity between two image patches f i and f ′ j : 

 i, j = 

∑ n 
l=1 f i,l f 

′ 
j,l − n ̄f i f̄ 

′ 
j √ ∑ n 

l=1 f 
2 
i,l − n ̄f 

2 

i 

√ ∑ n 
l=1 f 

′ 2 
j,l − n f̄ 

′ 
j 

2 
(3) 

here the pixel index l operates through the rectangular patch 

 = h × W . f̄ i and f̄ ′ j are the mean values of patch f i and f ′ j 
espectively. To get one element o i, j of correlation matrix M k , 

 × w × n 2 multiplications are operated, thus the correlation ma- 

rix calculation for one frame needs 3 × H × W 

2 × h 2 × w multipli- 

ations. Converting the correlation operation into matrix (or, equiv- 

lently, tensor) operations ( Jia et al., 2014 ) is a standard way for 

omputation acceleration, and is for the convenience of CNN input 

s well. 

Before the operation of shifting correlation, 2 stacks (or, equiv- 

lently, 2 tensors) S , S ′ ∈ R 

H×w ×h ×w are created for correlation ac- 

eleration. S and S ′ stack the image patches of current frame and 

revious frame as shown in Eq. (4) and Eq. (5) . 

 = 

⎡ 

⎢ ⎢ ⎣ 

f H f H · · · f H 
f H+1 f H+1 · · · f H+1 

. . . 
. . . 

. . . 
. . . 

f 2 H f 2 H · · · f 2 H 

⎤ 

⎥ ⎥ ⎦ 

(4) 

 

′ = 

⎡ 

⎢ ⎢ ⎣ 

f 
′ 
H−w/ 2 f 

′ 
H−w/ 2+1 · · · f 

′ 
H+ w/ 2 

f 
′ 
H+1 −w/ 2 f 

′ 
H+2 −w/ 2 · · · f 

′ 
H+1+ w/ 2 

. . . 
. . . 

. . . 
. . . 

f 
′ 
2 H−w/ 2 f 

′ 
2 H−w/ 2+1 · · · f 

′ 
2 H+ w/ 2 

⎤ 

⎥ ⎥ ⎦ 

(5) 

ince the OCT image stream is acquired by a continuous circular 

canning, the generation of S ′ covers 2 areas with w/ 2 A-lines from 

he edge of ˜ F k −2 and 

˜ F k respectively, in addition to ˜ F k −1 . So f ′ i in 

q. (5) is sampled from an extended image F ′ L = [ ̃  F k −2 , ̃  F k −1 , ̃  F k ] 

hich concatenates ˜ F k −2 , ̃  F k −1 and 

˜ F k . The strategy is similar for S . 

ecause one frame is corresponding to one cycle of circular scan- 

ing, the image patch in the bottom can copy the top A-lines of ˜ F k 
hen f i exceeds the boundary, which means that f i in Eq. (4) is 

ampled from F L = [ ̃  F k −1 , ̃  F k , ̃  F k ] , where ˜ F k is reused in the con- 

atenation. This way, M k is obtained by 7 multiplications and ad- 

itions between tensors. 

.3. Shifting vector estimation 

The correlation matrix provides a general interpretation of the 

ngular matching likelihood between image patches at different 

ositions. We propose a CNN based approach to finally estimate 

he shifting vector for image correction. 

As shown in the blue dashed block (A) in Fig. 2 , first M k is com-

uted with a predefined shifting window (in OCT videos the esti- 

ated maximum error value is 15 pixels in the polar domain, but 

e increased the margin to ensure the robustness and set the cor- 

elation window as w = 64 ). Then two convolution sub-branches 

ith different strides extract features from M k in parallel and pro- 

uce hierarchically coarse-to-fine responses. 
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Fig. 3. Correlation operation between adjacent frames. In the upper part of the figure, the images are shown in the Cartesian coordinate system for intuitive visualization. 

For the angular distortion correction, the images of the sequence are buffered and processed in polar domain. 

i

L

v

l

m

t

a

a

o

e

6

h

a  

a

t

b

d

t

q

c

H

m

t

t

a

c

d

t

t

a

d

t

s

s

w

f

m

t

w

o

R

c

e

e

u

i

L

w

a

m

t

v

a

L

t

v

i

L

w

i

2

2

o

a

c

d

i

a

t

Both the upper sub-branch and the lower sub-branch of shift- 

ng vector estimation nets have 6 convolutional layers, and a 

eakyReLU activation ( Maas et al., 2013 ) is used after each con- 

olution layer. 

The upper sub-branch has unequal strides size and rectangu- 

ar convolution kernels (from 1 st layer to 5 th layer), to involve 

ore information in horizontal direction than the vertical direc- 

ion. Importantly, this sub-branch always keeps the vertical stride 

s 1, which emphasizes the spatial correspondence (information 

t/around each row of M k represents the angular shift information 

f ˜ F k at the same A-line position). By doing so, the front 5 feature 

xtraction layers can gradually reduce the feature map width from 

4 to 1, while maintaining the feature map height H as input’s 

eight. The depth of each convolution operation’s output is twice 

s deep as its input (here we set the output depth of the first layer

s 8). The 5 th feature map A 

5 
F ∈ R 

832 ×1 ×128 extracts 128 local fea- 

ures, which could include the minimal value position, edge, and 

oundary position. A final layer with kernel size 1 × 1 and channel 

epth 128, reorganizes the 5 th feature map and decrease channels 

o a sub-branch output P̄ ′ with size 832 × 1 . 

In the ideal situation where the correlation matrix has a good 

uality (when calculated with images having dense features), P̄ ′ 
an represent the azimuthal mismatching between 

˜ F k and 

˜ F k −1 . 

owever, sometimes M k can miss valid information for some row 

 i when there is no feature in a patch (window) f i of ˜ F k . In 

his situation, since the estimation P̄ ′ has low spatial correla- 

ion in the vertical direction, the azimuthal distortion estimation 

t point i of P̄ ′ can have a significant error. Inspired by the in- 

eption module of GoogLeNet ( Szegedy et al., 2015 ), we intro- 

uce another sub-branch that loosens the stride step length in 

he vertical direction to 2, expanding the involved vertical spa- 

ial information in every convolution. In each convolution oper- 

tion of this sub-branch, the output depth is 3 times the input 

epth. This form of design has been widely used in CNN to ex- 

ract high-level abstract features from images ( Simonyan and Zis- 

erman, 2014 ). Compared with the upper sub-branch, this lower 

ub-branch will extract a high-level feature map A 

5 
F 2 ∈ R 

26 ×1 ×1728 , 

hich is less sensitive to noise and high intensity speckle arti- 

acts. A final layer with kernel size 2 × 2 re-organizes this feature 

ap, and outputs a matrix P̄ 
′′ 
m 

of size 13 × 64 . This matrix con- 

ains 13 groups of path position information, which represent the 

arping paths of 13 connected small patch areas (size 64 × 64 ) 

f M . 
k c

5 
The lower sub-branch output P̄ 
′′ 
m 

∈ R 

13 ×1 ×64 is reshaped to P̄ ′′ ∈ 

 

832 ×1 with less dimensions by connecting all 1 × 64 rows. P̄ ′′ is 

oncatenated to the upper sub-branch output P̄ ′ , and then it is op- 

rated by a 3 × 1 convolution kernel (with zero padding on the 

dges), to provide the final estimation vector P̄ of adjacent frames. 

The loss function for training the shifting vector estimating nets 

ses the conventional L 2 loss function and a self-designed continu- 

ty loss function. A standard L 2 loss is described by: 

 2 = 

1 

n p 

∑ n p 

i =1 
( P i − P̄ i ) 

2 

(6) 

here P i is an element of the true shifting vector P (ground truth), 

nd n p = 832 is the vector length. The L 2 loss function is com- 

only used for value estimation, while for this estimation task, to 

ake into account the prior knowledge on continuity of distortion 

ector ( van Soest et al., 2008; Ahsen et al., 2014; Uribe-Patarroyo 

nd Bouma, 2015 ), a continuity loss is added as follows: 

 c = 

1 

n p − 1 

∑ n p −1 

i =1 
( ̄P k,i − P̄ k,i +1 ) 

2 

(7) 

By calculating L c , and combining it with L 2 in the network 

raining, the attraction towards local minima with discontinuous 

ector estimation will be suppressed. The final loss for branch (A) 

s: 

 A = αL c + (1 − α) L 2 (8) 

here α gradually decreases from a large value to a smaller value 

n the training process (see training details in Section 3 ). 

.4. Accumulative error compensation 

.4.1. Group rotation estimation 

The CNN branch (B) (red dashed box in Fig. 2 ) estimates an 

verall rotation from an image array. 

This branch consists of a contracting path, an expansion path, 

nd a fully connected layer. There are two encoder layers (indi- 

ated by convolution in red color) in the contracting path and two 

ecoder layers (indicated by convolution transpose in green color) 

n the expansion path, and both the encoder and decoder layers 

re connected with LeakyRelu activation. 

The encoder layers are used for learning the contextual fea- 

ure hierarchy. On the other hand, the decoder layers use transpose 

onvolution (also referred as up-convolution ( Long et al., 2015 ) ) to 
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Fig. 4. Endoscopic OCT data acquisition. (A) The OCT probe inserted in the rectan- 

gular phantom. (B) A steerable OCT catheter is inserted in an instrument channel 

of a robotized interventional flexible colonoscope, and it is applied to scan a colon 

model. (C) The steerable OCT catheter is applied to in vivo testing of a swine colon. 

(D) The experimental setup of the colon model. 
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3

e

b

erform the refinement, and they are concatenated with the corre- 

ponding encoder blocks. In this way, the multi-scale information 

assed from low level local feature maps to high-level coarser fea- 

ure maps is preserved. The difference in OCT videos is that the 

otation (flow) only occurs in one dimension. Our method of reor- 

anizing the three multi-scale feature maps is to apply three small 

ernels with 1 × 1 strides to reduce their channel depth from 512 

o 1, and then apply average pooling to each fine local estimation 

o get equally resized 4 × 1 × 1 estimations. By doing so, higher 

cale estimation R̄ ′′ and R̄ ′′′ are aligned to coarser estimation R̄ ′ . A 

ully connected layer is used to interpret the estimation from three 

cale levels to get a final robust estimation �r̄ k , and the overall ro- 

ation is obtained by r̄ k = r̄ k −1 + �r̄ k . 

The loss function for training the group rotation estimating nets 

n branch (B) is a multi-scale loss, because it should not only 

nsure the estimation accuracy in the final output of �r̄ k , but 

lso maintain the accuracy of higher scale estimation in a certain 

evel: 

 B = β1 | �r − �r̄ k | + β2 

∣∣�r − �r̄ ′ k 
∣∣

+ β3 

∣∣�r − �r̄ ′′ k 

∣∣ + β4 

∣∣�r − �r̄ ′′′ k 

∣∣ (9) 

here �r̄ ′ 
k 

is the mean of the 4 × 1 estimation vector R̄ ′ ex- 

racted from the final encoder result, �r̄ ′′ 
k 

and �r̄ ′′′ 
k 

are the mean 

f estimation vectors resized from 26 × 32 map and 104 × 128 

ap respectively. The weights βi are adjustable during the train- 

ng process, but β1 remains predominant (see training details in 

ection 3 ). 

.4.2. Fusion and online correction 

The fusion of P̄ k and r̄ k can be considered as the problem of 

usion between an integral indirect variable with high accuracy 

nd another robust direct variable. Advanced filtering techniques 

o solve this kind of problem can rely on a form of probabilistic 

usion like the extended Kalman filter, or alternatively use comple- 

entary filters ( Allgeuer and Behnke, 2014 ). For computational ef- 

ciency and robustness, we use the concept of a PI Complementary 

ilter ( Mahony et al., 2005 ) to fuse the P̄ k vector with the r̄ k value.

he complementary filter has been widely used as an efficient way 

o fuse the data of gyroscopes and accelerometers, which combines 

igh-pass easily drifting measurements with low-pass stable mea- 

urements to form a robust high bandwidth estimate of the rota- 

ional attitude ( Mahony et al., 2005 ). 

A discrete form of PI complementary filter for algorithm imple- 

entation can be expressed as: 

ˆ 
 k = k p �( ̄P k , ˆ P k −1 ) + (1 − k p ) ̄r k 1 + k i I k (10) 

 k = I k −1 + ( ̄r k 1 − ˆ P k ) (11) 

here k p and k i are PI compensating gains. I k is the integral com- 

onent vector. 1 is a vector of ones. �( ̂  P k −1 , P̄ k ) is the element- 

ise operation in formula (1) . Each element ˆ P k,i of the final warp- 

ng vector ˆ P k represents the angular shift between the position of 

he i th A-line of ˜ F k and its correct position in polar domain. 

. Dataset and training 

In medical image processing, there is limited availability of 

pen-source training sets due to ethical and practical reasons. It 

s even more complicated for the OCT artifacts, since it is hard to 

abel the A-line level shifting within videos, and no public data set 

ith ground truth is available. Using a calibration phantom might 

ncrease the accuracy of ground truth annotation. However, it will 

e difficult to manufacture a variety of such calibration phantoms 

overing different tissue or material types that allows to afterwards 
6 
eneralize to real tissues. For these reasons, we trained the net- 

orks of the proposed framework with semi-synthetic OCT videos 

y intentionally shifting each A-line in real OCT images (see de- 

ails in subsection 3.2 ). In this way, the distribution of rotational 

istortion in the data can be adjusted to cover the real distribu- 

ion, but the distribution of scanning noise is not simulated. To 

olve this, we used a variety of image augmentation strategies 

o mimic the real scanning noises (details in subsection 3.3.1 ).We 

est the trained networks on both semi-synthetic videos and real 

ideos. Additionally, we collected in vivo pre-clinical and clinical 

CT videos, which are not included in the training dataset, to eval- 

ate the generalization and robustness of the framework to previ- 

usly unseen data. This section describes the experimental setup, 

ata generation and network training. 

.1. OCT Data sources 

We have applied a data set synthesis strategy to generate train- 

ng image sequences by intentionally distorting real OCT images. 

e used previously published data obtained with low-profile OCT 

atheters in the cardiovascular system ( Wang et al., 2015 ) and the 

espiratory system ( Lee et al., 2011 ), as well as with a capsule OCT

atheter in the digestive tract ( Gora et al., 2013 ) (5K images in to-

al). In addition, OCT videos are also collected using a custom en- 

oscopic OCT system with a proximal scanning ( Mora et al., 2020 ). 

olumetric OCT data was collected using an internal pullback of 

he probe (1K images) or by pulling back the whole sheath dur- 

ng 2D rotational scanning (1K images) in a rectangular phantom 

ube with a known geometry ( Fig. 4 (A)). The self-developed probe 

as also used for endoscopic examination of a colon phantom 

ade with optical mimicking tissue ( Zulina et al., 2021 ) (shown 

n Fig. 4 (B)), where a continuous stream of 2D images (3K) with 

o pullback was displayed in real-time for inspection. We split all 

he OCT images (including published and self-collected videos) by 

: 2: 1 into training, validation, and testing data. 

.2. Semi-synthetic OCT for training 

To train the warping vector estimation nets in branch-A, we gen- 

rated image pairs, while to train group rotation estimation nets in 

ranch-B, we generated image arrays. 
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Fig. 5. OCT image pairs of the generated data set in polar domain. Local areas of 

each pair are enlarged to highlight the distortion. (A) An image pair generated from 

OCT image with fiducial markers ( Wang et al., 2015 ), so that horizontal strips can 

be screened in the OCT image. (B) Ordinary OCT image pair without the marker. (C) 

In the source images of this pair, the sheath has been cropped out ( Lee et al., 2011 ), 

but these images are still useful for algorithm training. 

Fig. 6. OCT image arrays generated for training of group rotation nets, on each 

row from left to right are: latest raw frame ˜ F k and previous stabilized frame ˆ F k −1 , 

cropped and resized latest frame ˜ F k , cropped and resized reference frame F 0 . (A) 

is an example of images with OCT sheath, so a normal cropping is used; (B) is an 

example of lung airway OCT images ( Lee et al., 2011 ). 
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.2.1. Image pairs with element wise shifting 

To generate one training pair (two images) for the warping vec- 

or estimation network (branch-A), we first take one OCT image 

rom the database as the initial image. Then each individual A- 

ine within this initial image is shifted by a warping vector P s . The

istorted image is paired with the initial one as network input, 

hile P s performs as ground truth in training. Fig. 5 shows sev- 

ral training pair samples generated from public and self-acquired 

riginal OCT images. P s is randomly drawn from a distribution that 

hould be representative of distortions in real situations. This dis- 

ribution is estimated by applying the Graphic Searching (GS) algo- 

ithm ( Abouei et al., 2018 ) to real videos and measuring the warp-

ng vector P̄ t . By doing so, an estimated maximum value m t of rota- 

ional shifting is obtained. In our case, m t = 15 pixels in the polar

omain. To ensure proper coverage of extreme cases, we chose a 

aximum value m s = 25 pixels. 
7 
Each element of the synthetic warping vector P s is uniformly 

ampled in the [ −m s , m s ] range. To guarantee the continuity of the

ynthetic warping vector, a 1D Gaussian filter is applied to smooth 

 s , and the filtering parameter (sigma) is randomly chosen from 3, 

 or 7. 

.2.2. Image arrays with group rotation 

The training set for group rotation contains image arrays and 

orresponding group rotation ground-truth values r s . One input im- 

ge array for the pure group rotation estimation nets is built from 

 images that are cropped and resized: the reference image F 0 , 

lgorithm stabilized image ˆ F k −1 , and newest distorted image ˜ F k 
see Fig. 6 ). To generate such image array, first, one reference frame 

s directly selected from the original image database, the left part 

f F 0 is cropped out to keep rightmost region of shape H × 0 . 2 W 

f the image. As for mimicking the newest unstable frame, the ref- 

rence frame F 0 is distorted to ˜ F 0 with a random warping vec- 

or P a = P s − p m 

, where the mean value p m 

of P s is removed. Then

he distorted 

˜ F 0 is rotated by a group rotation value r s to get ˜ F k . 

n the acquired videos the estimated maximum rotation between 

wo adjacent frames is 15 pixels in the polar domain image, and 

onsidering the estimation error, we set the rotation limitation to 

5 pixels to cover the distribution and ensure robustness. r s serves 

s the ground truth in the learning process. In the ideal situation, 
ˆ 
 k −1 could be a copy of F 0 , however, ˆ F k −1 is taken from the al- 

orithm output where residual correction errors are expected. To 

revent the networks from “over-trusting” the stabilized frame, a 

mall random correction error value δ is used to shift the synthetic 

tabilized frame ˆ F k −1 (the tuning of δ in training process is pre- 

ented in subsection 3.3 ). 

.3. Training process 

The training pipeline is implemented with Nvidia Qt10 0 0 

raphic card and Intel i5-9400H CPU. The code is implemented us- 

ng the Pytorch framework ( Paszke et al., 2017 ) for tensor opera- 

ion and gradient backward propagation. We adopt the following 

mplementation choices: Batch Normalization (BN) is used right 

fter convolution and before activation ( Ioffe and Szegedy, 2015 ), 

ropout is not used ( Hinton et al., 2012 ) and weight initialization 

s performed following the method described in ( He et al., 2015 ). 

he final result is hardly affected by the optimization method, 

oth Adam ( Kingma and Ba, 2014 ) and Stochastic Gradient Descent 

SGD) solvers can fine tune the networks’ weights. The results pre- 

ented in this article are trained with the SGD weights optimiza- 

ion method (we used a weight decay of 0.0 0 01 and a momentum 

f 0.9). We first pre-trained the networks on a small dataset to im- 

rove the efficiency of determining hyper-parameters and reducing 

ime consumption ( Bengio, 2009 ). We created two small training 

ets in order to train branch A and branch B, respectively. 16 im- 

ges were randomly selected (4 from each of cardiovascular, diges- 

ive, lung, and colon phantom images), and 500 warping vectors 

 s and shifting scalars r s were randomly generated. In total, both 

ets feature 80 0 0 image pairs and 80 0 0 image arrays for warp-

ng vector learning and group rotation learning respectively. After 

he networks of the two branches converge on this small data set, 

raining pairs and arrays are generated on-line - an image pair or 

rray is never seen twice during training. 

.3.1. Data augmentation 

Data augmentation is vital for machine learning algorithms to 

void over-fitting and to enhance robustness. We enable data aug- 

entation on-line for training. Geometric transformations (shift in 

 directions, and scaling in polar domain) are applied equally to 

ach image within image pairs or image arrays. For the group ro- 

ation training array’s translation augmentation, the rightmost part 
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Fig. 7. The estimation error in the different training stages. The error is reported in pixel, and each pixel in polar coordinates corresponds to 0 . 432 ◦ The sub-plots in the 

top row are the training errors of the two branches with small data set (SDS). The average validation error in 3 stages (S1: stage1, S2: stage2, S3: stage3) of on-line data 

generation (OLG) are presented in the sub-plots below. 

Table 1 

Parameters values for the different training stages. (SDS: Small Data Set, OLG: On- 

Line Generating, S1: Stage 1 of OLG, S2: Stage 2 of OLG, S3: Stage3 of OLG; LR: 

Learning Rate, BS: Batch Size). 

SDS 

OLG 

S1 S2 S3 

LR A 3 × 10 -4 3 × 10 -5 3 × 10 -6 1 × 10 -8 

BS A 50 20 8 2 

α 0.2 0.1 0.1 0.02 

LR B 5 × 10 -4 5 × 10 -5 5 × 10 -6 1 × 10 -8 

BS B 20 10 6 2 

δm 0 0 0 ±4 . 32 ◦
β β1 0.25 0.3 0.4 0.5 

β2 0.25 0.3 0.3 0.3 

β3 0.25 0.2 0.15 0.1 

β4 0.25 0.2 0.15 0.1 
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n the polar domain (the central part in Cartesian coordinates) is 

ept, to ensure that mainly sheath features exist in this area. Noise 

ddition, and brightness and contrast modification are also applied 

o OCT images. This kind of pixel intensity modification is applied 

ifferently to each image of a generated pair or array. 

.3.2. Gradual parameter tuning 

Besides the training mode switching strategies, several param- 

ters are gradually changed from the beginning to the final fine- 

rain stage. Table 1 gathers the parameters used initially for the 

mall data set (SDS) and online data generation (OLG). The fine- 

raining on data with on-line generating (OLG) is divided into 3 

tages, where the learning rate, data batch size, max/min limitation 

m 

of additional rotation δ, continuity loss weight and multi-scale 

oss weight β = [ β1 , β2 , β3 , β4 ] are gradually modified. The train- 

ng on the small data set takes 2 hours to converge, whereas the 

raining with on-line data generation approximately takes 48 hours 

o flatten the variation of loss value. Fig. 7 shows estimation loss in 
8 
ifferent training stages. The sub-windows in the top row present 

he training loss of the two branches on the small limited data set, 

here the group rotation learning of branch (B) takes more time to 

onverge compared with warping learning of branch (A). In the on- 

ine data generating mode, we calculate the average estimating er- 

or after each iteration using generated image pairs and images ar- 

ays from the validation database, where the validation data batch 

ize is equal to the training batch size. Each time when the aver- 

ge validation error converges to a small value, the parameters are 

uned and the training pipeline switches to another training stage. 

he whole process reduces the average validation error of branch 

A) and branch (B) to approximately 0.1 and 3 pixels respectively 

1 pixel in polar domain represents 0 . 432 ◦ in Cartesian domain), 

nd at the end of training stage 3 the gradient of the loss function 

s close to zero. 

. Results 

All the trained CNN are deployed with Python codes on Ubuntu 

8.04.4 system with the same computer used for training. The net- 

orks in branch (A) and (B) take 40 ms and 10 ms respectively in 

arallel mode, the correlation costs 96 ms with parallelization, and 

he fusion and warping process additionally take 9 ms. The pro- 

essing time of an entire algorithm iteration is therefore 145 ms. 

fter the network training, the correction algorithm is tested on 

oth synthetic videos and real videos (on phantom and in vivo) to 

ssess its performance. 

.1. Accuracy assessment 

Half-synthetic videos for testing are generated with individual 

riginal OCT images, and each of them contains 501 frames. To 

enerate one semi-synthetic video, one image is selected from the 

alidation database to be the first frame, and then 500 warping 
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Fig. 8. Heatmap of warping vector estimation mean error (the unit of scale bar is pixel). The columns from left to right are from 5 groups of semi-synthetic videos 

generated with: cardiovascular, lung air way, digestive tract, rectangular phantom, and tissue phantom OCT images. The proposed method is compared to GS method against 

two conditions: mimicking high intensity A-line speckles, or adding noise (including Gaussian, pepper&salt and shot noise). 

Table 2 

Mean square error value in different synthetic video tests. The unit of all values 

is Pixel 2 , each pixel in Polar coordinates represents 0 . 432 ◦ . 

GS Proposed 

Noise Noise + Spec. Noise Noise + Spec. 

Vascular 20.05 ±18.50 48.68 ±72.93 1.88 ±1.04 6.43 ±3.59 

Air Way 35.39 ±64.89 58.27 ±105.2 3.98 ±2.45 9.24 ±5.60 

Digestive 66.61 ±224.8 354.8 ±461.8 6.44 ±4.50 28.5 ±13.2 

Phantom 19.57 ±16.51 41.40 ±39.86 1.21 ±0.73 5.23 ±2.56 

Model 36.26 ±25.90 71.09 ±81.11 1.68 ±1.00 9.31 ±5.30 
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ectors P are randomly sampled with limit value of 8 . 65 ◦ (corre- 

ponding to 20 pixels), and 500 group rotation deviation values �r

re randomly sampled with varying limit values (for a period of a 

ynthetic video, the group shift variation is limited to a positive 

alue; while for another period, it is limited to a negative value). 

hen the first frame is iteratively rotated with �r and then dis- 

orted with P to simulate a video stream. 

In the state-of-the-art rotational artifacts correction algorithms, 

racking based approaches ( Abouei et al., 2018 ) are more suit- 

ble for the scenario when both stretch-shrink and shaking arti- 

acts exist. Tracking based algorithms are less threshold sensitive 

n comparison to within-frame space frequency analysis based al- 

orithms ( Mavadia-Shukla et al., 2020 ), especially if there is no vis- 

ble repeated A-lines. Based on these factors, we compare our pro- 

osed method to the GS based method ( Abouei et al., 2018 ), that

s capable of A-line level error estimation and correction. 

The estimation Mean Square Error (MSE) value of each frame 

n videos is calculated by using true vectors as references, and the 

esults are shown in Table 2 . The proposed method is compared 

o GS under two conditions: adding noise (including Gaussian, 

epper&salt and shot noise), and mimicking high intensity A-line 
ig. 9. Comparison of warping vector estimations. Images in each row (from left to right

f adjacent frames. In each correlation matrix, the white line indicates the ground truth v

ed line indicates the estimation of the proposed algorithm. The dashed yellow circles h

ethod. Images from top to bottom are results of synthetic videos generated with differen

ract and (D) Lung air way OCT images. 

9 
peckles in every B-scan. The deep learning based algorithm sur- 

asses the GS based method in all of these situations, and estima- 

ion errors are one or two orders of magnitude lower than the GS 

ased method. Among these videos, the performance in digestive 

ract OCT suffers more from speckle artifacts due to the limited 

eatures in capsule OCT images, and also due to the reduced reso- 

ution in the available public videos. But still, the proposed method 

as lower MSE than GS method (9.24 ±5.60 vs. 354.8 ±461.8 pixel 2 ). 

 mean error heatmap of 5 videos in different scenarios are shown 

n Fig. 8 , where estimation error of every individual frames (2500 

rames in total) are presented. The GS method is affected by the 

ddition of speckle artifacts, and more occasionally has significant 

stimation errors (larger than 12 pixels) in comparison to the pro- 

osed method, which maintains estimation errors under 3 pixels 

n most cases. 

Fig. 9 shows examples of warping vector estimation within the 

32 × 64 correlation matrices. The vector estimated by the pro- 

osed algorithm (red line) is closer to the ground truth vector 

white line) than the vector obtained by the GS algorithm (green 

ine). In the yellow dashed circles in Fig. 9 , significant estimation 

rror of the GS algorithm can be seen. The reason for this is that 

n the correlation matrix the ”valley-like” feature which the GS al- 

orithm highly relies on is not obvious. Cases (C) and (D) are more 

roblematic for path searching, since some part of the original OCT 

mage does not have adequate features for correlation. In these sit- 

ations, the value of path searching diverges frequently from the 

rue value. Nevertheless, the CNN estimated warping vector can 

till follow the ground truth. 

We obtained mean value en-face projections ( Abouei et al., 

018 ) of the OCT videos where each A-line is accumulated to one 

ingle value, so that the OCT data stream in polar domain are pro- 

ected into 2D images. In this case the vertical Y axis corresponds 

o a circumferential scanning (B-Scan) and the horizontal X axis 
) are: the source image for video synthesis and two 832 × 64 correlation matrices 

ector, green line indicates the result of a GS algorithm( Abouei et al., 2018 ), and the 

ighlight situations when the GS based method has larger error than the proposed 

t original images: (A) Rectangular phantom, (B) Cardiovascular system, (C) Digestive 
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Fig. 10. En-face image comparison of synthetic videos before correction and after algorithm correction. The colorbar indicates the intensity scale normalized by the maximum 

value. Images in each row (from left to right) are: the source image for video synthesis (in polar coordinates), en-face image of synthetic video and corresponding en-face 

image of stabilized video. Images from top to bottom are results of synthetic videos generated with different original images: (A) Rectangular phantom, (B) Digestive tract 

and (C) Lung air way OCT images. 

Fig. 11. The STD value of videos from different algorithms’ output. The top row and bottom show curves of σ3 and σ17 and corresponding statistical box-plots respectively. 
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S

orresponds to a longitudinal volumetric scanning (3D Scan) or 

ime. Fig. 10 shows results of the proposed two-branch networks 

ith fusion parameters k p = 0.85 and k i = 0.0 0 01. Before the algo-

ithm correction, the rotational artifacts existing in the synthetic 

ideo are visualized by a combination of overall intensity shift and 

ocal fluctuation along the longitudinal direction of en-face projec- 

ions. After the algorithm correction, the overall shift is eliminated, 

o that horizontal straight lines patterns can be seen in the en-face 

mages. Moreover, the local fluctuation is significantly reduced by 

6% in polar domain (measured by the deviation of max intensity 

oints between 2 adjacent frames). 
10 
.2. Robustness assessment 

We assess the robustness of the proposed method by qualita- 

ively evaluating the drift reduction, geometric distortion reduc- 

ion, as well as quantitative metrics. Synthetic videos provide di- 

ect ground truth for validation, while in real OCT videos only ob- 

ects with significantly distinguishable geometries can provide re- 

iable reference value/ground truth. When no guaranteed distor- 

ion ground truth value is available, we calculate the normalized 

tandard Deviation (STD) σ to estimate the correction performance 
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Fig. 12. Results from the anatomical colon model by robotic displacement of the catheter with the experimental setup shown in Fig. 4 . (A) shows mean value en-face 

projections of a scan around a polyp, and two exemplary cross-sections re-sliced along the translation axis. Re-slices from two locations (indicated by red and light-green 

dashed dot lines) are presented. The intensity scale of en-face projection images is normalized by its maximum value. (B) Exemplary rotational cross-sections obtained from 

three positions marked by gray lines. In each position three consecutive frames are encoded in RGB. The presence of significant colorful pixels caused by artifacts is pointed 

out by yellow arrow heads. Asterisks mark out over-stretched images, that appear in the GS output. 

Table 3 

The mean value and variance of STD value of different algorithm’s output in rectangular phantom video. 

Original GS Proposed Algorithm 

Branch-B k p = 0.55 k i = 10 -3 (P1) k p = 0.85 k i = 10 -4 (P2) k p = 0.95 k i = 10 -5 (P3) Branch-A 

σ3 mean 13.06 9.375 11.82 8.108 7.152 7.277 8.407 

variance 9.571 7.612 4.925 2.306 1.685 1.682 3.192 

σ10 mean 19.18 15.35 16.74 13.68 12.61 12.78 14.26 

variance 9.470 8.873 5.021 3.377 2.720 2.673 3.780 

σ17 mean 21.21 17.90 18.89 16.07 15.02 15.22 16.30 

variance 8.448 9.076 5.389 4.143 3.181 2.978 3.662 

(

σ

w

i

f

v

c

s

p  

2

 van Soest et al., 2008 ). The definition of STD is: 

n = 

1 

N sig 

∑ N sig 

i =1 , j=1 
σ̄ ( f i, j ) (12) 

here n is the number of frames in stack for calculation. σ̄ ( f i, j ) 

s the standard deviation calculated with pixels f i, j in one stacked 
11 
rame stream, i and j are selected pixel indices in horizontal and 

ertical axis respectively. N sig is the number of pixels used to cal- 

ulate σ̄ . Since different noises and uncorrelated high intensity 

peckles occur in different frames, alignment algorithms are ex- 

ected to decrease the STD value, but not to zero ( van Soest et al.,

008 ). 
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Fig. 13. Results obtained for unseen in vivo data. (A) En-face projection comparison (normalized intensity scale), and images from top to bottom row are original projections, 

results of the GS algorithm and results of the proposed algorithm. (B) 2D cross-sectional images corresponding to the gray lines in en-face projections; The red dashed 

circles enlarge the area where additional distortion is introduced by the GS method, while the proposed method correct the geometric orientation without affecting the 

image quality. The dashed white arrow lines point to the directions of the tissue. 
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.2.1. Bench-top quantitative evaluation 

For quantitative evaluation of the performance of the CNN 

ased algorithm we use a stream of 2D frames obtained by pulling 

ack the catheter in the rectangular phantom with a known ge- 

metry while maintaining a constant orientation of the catheter 

 Fig. 4 (A)). 

Fig. 11 shows the results of STD values with different frame 

tack lengths. We analyze the instability over both a short term 

eriod with σ3 and a longer period with σ17 . Here STD curves of 

he original video, the video corrected by the conventional GS al- 

orithm, and videos corrected with two parameter combinations, 

eferred to as “P1” and “P2”, are shown. The “P1” parameters com- 
12 
ination is given by k p = 0.55 and k i = 0.001 and it is introduced to

ssess the behavior of the algorithm when relying more on the 

roup rotation estimation branch. Parameter combination “P2” is 

he same as the one used for accuracy assessment in Section 4.1 . 

oth the parameter combinations obtain better correction results 

han the GS algorithm in both σ3 and σ17 . Detailed statistic anal- 

sis of STD is presented in Table 3 , which shows the mean value

nd variance of STD with different stack lengths σ3 , σ10 and σ17 

f different algorithms outputs. Under these metrics, the proposed 

lgorithm has better performances compared with graphic path 

earching algorithm regardless the choice of fusion parameters, ex- 

ept when disabling branch (A). Generally, compared with the fu- 
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Fig. 14. En-face images (normalized intensity scale) of OCT data collected in the 

clinical trial with the tethered capsule OCT catheter. The first and second columns 

show the same region from 2 scans on the same patient, one with the capsule 

descending the esophagus and the other with the capsule being pulled up. The 

third column shows a section from the second ascending scan in the distal part of 

the esophagus where the original scan has strong drift artifacts. Red arrow heads 

point to large non-alignment caused by artifacts. Red star marks out small insta- 

bilities. Red arrows point to the same visible lesion. Asterisks mark out incorrectly 

deformed parts of the en-face images, that appear in the GS output. 
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ion parameters k p = 0.55, k i = 0.001 (combination “P1”), which al- 

eady have a considerable video correction ability, larger k p and 

maller k i make the fusion algorithm rely more on branch (A), 

hich can improve the correction in the short term, reducing the 

hort term STD mean value significantly (combinations ‘P2’ and 

P3’ in Table 3 ). However, if the weight of branch (A) is tuned up to

ver-rely on the warping vector estimation branch (when k p = 1.0, 

 i = 0, last column of the table), not only the geometry of individ-

al images will be distorted due to the drift error, but also the 

erformance on STD reduction will be affected because of lacking 

ompensation of branch (B). 

.2.2. Qualitative tissue phantom evaluation 

We collected OCT data stream during translation of the OCT 

robe inside an anatomical colon model using the robotized in- 

erventional endoscope ( 4 (D)). The probe scanned the colon lu- 

en lengthwise near a polyp ( Fig. 4 (B)). The en-face projections 

nd exemplary cross-sections re-sliced along the translation axis 

how the instability of the original scan. Although the GS based al- 

orithm reduces high frequency instabilities, some instabilities are 

till visible ( Fig. 12 (A)). In comparison, the proposed algorithm re- 

uces the fluctuations and ǣsmooths ǥ the tissue surface, and also 

eeps the intensity distribution of the original en-face image. To 

ualitatively analyze the influence of stabilization method on A- 

ine distribution per frame and in adjacent frames, three consec- 

tive frames were assigned to one of three channels of the RGB 

mage and overlapped ( Fig. 12 (B)). Compared with the initial im- 

ge sequences with rotational artifacts (represented by the color- 

ul pixels and the non-uniform orientations), the proposed method 

tabilized well the image sequences, while maintaining informa- 

ion about the tissue characteristic and the relative distance be- 

ween the scanning center and tissue surface. A side-by-side com- 

arison shows that the GS method works fine in the beginning of 

he scanning (colorful pixels are reduced), but the drift error grows 

hen the OCT probe moves and introduces an extra distortion to 

he original image. When estimation error is large, the OCT image 

ill be over-stretched and repeated A-lines can be targeted in the 

orrection results (seen from the tissue surface marked by asterisks 

n the middle rows of Fig. 12 (B)). 

.2.3. Generalization to unseen in vivo data 

To evaluate the generalizability of the proposed method on 

nseen data, we collected OCT data using a steerable OCT 

atheter compatible with a robotized interventional colonoscope 

 Mora et al., 2020 ) in in vivo swine experiments ( Fig. 4 (C)). The

nimal test was approved by the Institutional Ethical Committee 

n Animal Experimentation (MESR: #2016072209464427). 

In the in vivo animal test the catheter was placed at one po- 

ition upon the colon tissue, and thus the tissue image should re- 

ain at a constant orientation. Overall rotation of the original an- 

mal test video is visible in en-face images (see the shift of max 

ntensity position in the first row of Fig. 13 (A)), which has a max

ertical shift of 219 pixels within the longitudinal scan (measured 

y the shift of the max intensity point through the whole en-face 

rojection). Compared with conventional GS algorithm, which still 

as a orientation shift of 139 pixels, the proposed algorithm can 

etter warp the “curve of max intensity” to a straighter line with 

nly a small variation of 10 pixels, which reduces 91% of the ro- 

ational error. Each row of Fig. 13 (B) shows cross-sectional OCT 

mages taken from this data stream at different positions, where 

otational artifacts can be targeted. The proposed method corrects 

he angular errors without changing the quality or other informa- 

ion of the images. 

To test the proposed method in clinical OCT images, following 

ata reuse agreement we applied the correction algorithm to OCT 
13 
mages collected previously in two subjects with a tethered cap- 

ule endomicroscopy (TCE) in a human trial approved by Institu- 

ional Review Board (IRB: #2011P002619). In the TCE technology a 

otational scanning OCT probe is enclosed in a distal capsule and 

 tether that connects it to an external OCT system ( Gora et al.,

013 ). After the capsule is swallowed, typically up to four volu- 

etric OCT images of the esophagus are collected when the cap- 

ule descends to the stomach and is pulled up in the esophagus. 

ending and tension applied to the tether can add image artifacts. 

ig. 14 shows results of correction with the proposed algorithm 

nd GS algorithm of three scans acquired in the same subject. The 

rst column shows en-face projections of 200th to 500th frames 

btained during the first descending scan. The en-face image of 

he original data shows strong in between frame instability visi- 

le as a wavy pattern (red arrowheads in Fig. 14 ). After correction 

ith the proposed algorithm an irregular lesion with lower inten- 

ity can be noted (red arrows in Fig. 14 ). A similar lesion shape can

e also seen in en-face images of original 50th to 450th frames 

f the ascending scan (middle column in Fig. 14 ) where the cap- 

ule stability was very good. As can be observed the proposed al- 

orithm also corrected small instabilities still present in the orig- 

nal data set of the first ascending scan (red starts in the mid- 

le column of Fig. 14 ). On the other hand, graph search algorithm 

ntroduced lesion deformation in both descending and ascending 

cans (red asterisks in the third row of Fig. 14 ). The right column 

n Fig. 14 shows 250th to 500th frames of the second ascending 

can where a strong drift of the OCT data can be seen. The drift 

s visualised as a continuous diagonal shift in the en-face image 

hat is almost completely removed by the proposed method. The 

S algorithm corrects the scanning data but introduces distortion 

f the shape of objects in en-face image (red asterisk in the third 

ow of Fig. 14 ). In Fig. 15 we present a volumetric reconstruction 

f three dimensional TCE data obtained in another subject. The 3D 

econstruction is rendered with ImageJ software ( Schindelin et al., 
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Fig. 15. 3D reconstructions of OCT data collected in the clinical trial with the teth- 

ered capsule OCT catheter in another subject. The red arrow heads point to wavy 

patterns caused by the artifacts. The white asterisks mark out the conjunction area 

between healthy esophagus and Barrett’s esophagus. The white arrows point to 

higher intensity patches in the Barrett’s esophagus segment. 
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015 ). The comparison of the reconstructed data before and after 

orrection shows that the proposed algorithm removes instabilities 

resent in the original data set that are especially noticeable in 

he areas of loss of contact visible as the darkest areas (red arrow 

eads in Fig. 15 ). After correction, typical irregularities of the junc- 

ion between the tissues with features of the normal esophagus 

n the left and of Barrett’s esophagus on the right can be well ap-

reciated (white asterisks in Fig. 15 ). In addition, patchy areas of 

igher intensity in the Barrett’s segment (white arrows in Fig. 15 ) 

ave more regular contours, which helps with their visual assess- 

ent. 

. Discussion and conclusion 

We developed a new solution to tackle the distortion and insta- 

ility problem using deep CNN, which can be generalized for scan- 

ing situations in different tar gets and with different catheters. 

e proposed a new A-line level shifting error vector estimation 

etwork to extract optimal path from a correlation matrix, which 

as higher accuracy and robustness compared with the conven- 

ional approach in situations where the images have few features. 

oreover, we solved the problem of error accumulation in itera- 

ive video processing, with a group rotation estimation net. This 

NN based algorithm was trained on semi-synthetic data and ap- 

lied to real videos acquired in various scanning conditions. A full 

alidation on in vivo data is nearly impossible, due to the fact that 

nnotating rotational distortions on such data is very complex. The 

esults presented, however, suggest that the proposed algorithm 

eneralizes well over relevant in vivo pre-clinical data and clini- 

al data from another modality of rotational scanning OCT, which 

as never seen during the training. 

The proposed image based solution relies on the assumption 

hat the appearance change caused by rotational artifacts is faster 

han the appearance change of tissue itself. This assumption is 
14 
alid in most standard cases, as shown in the results section. Nev- 

rtheless, the algorithmic reduction of distortion may be affected 

n some pathological cases, where the screened tissue appearance 

hanges very quickly, especially at the conjunction between two 

ifferent types of tissue. Note that the proposed method needs 

 reference frame for correcting drift and accumulative error. In 

he beginning of a scanning the drift is small and the stretch and 

hrink distortion happens less occasionally than the shaking, which 

eans a visually correct reference frame can be chosen from a 

mall period at the beginning of a scan. The current implemen- 

ation presented in this paper is not adapted for a conventional 

ullback scanning that moves the rotating lens along the protective 

heath. Indeed, for this type of pullback the initial frame cannot 

e used for drift suppression because of possible changes of ap- 

earance of the sheath along the pullback. To apply the proposed 

ethod to a pullback scanning a sheath registration and calibra- 

ion will be needed, which means the reference should be a pre- 

ecorded sheath image stack instead of a single B-scan. 

Although branch B could also affect the accuracy of A-line level 

orrection, the fusion of the two branches can still compensate a 

udden stretch-shrink distortion that would emerge in a B-scan. 

t is worth mentioning that in the algorithm testing we disabled 

ranch-A (warping vector estimation) or branch-B (group rotation 

stimation), and the results show that the performance is degraded 

ith only one of the two branches. Correction accuracy may be 

mproved by other probabilistic fusion filters, or by optimizing the 

arameters of the PI complementary filter based on objective func- 

ions. 

Another motivation of this work is to follow our previous work 

n integration of OCT with robotic endoscope ( Mora et al., 2020 ), 

nd online image processing is crucial in this scenario because 

obot positioning and displacement could be guided by the OCT 

mages. It is however possible only if images are geometrically cor- 

ect. The on-line correction algorithm can also enable the use of 

n-face projection images in gastrointestinal applications, which 

ould help, for example, in assessment of the length of Barretts 

sophagus or localization of suspicious lesions ( Liang et al., 2016 ). 

he proposed algorithm is designed for on-line video processing 

ith historical data as input only. The current implementation 

f the algorithm has an update rate around 7 FPS. It is not fast 

nough for correcting every frame of a real-time OCT imaging sys- 

em which could have a framerate of 60 FPS due to hardware 

imitations and large input size. An immediate solution to reduce 

omputational consumption could be down-sampling the input im- 

ge or shortening the shifting window w , but it will negatively 

ffect the quality of correlation matrix and angular registration 

ange. Alternatively, code and algorithmic optimizations, especially 

n the correlation stack, could also accelerate the computation. We 

lan to work on algorithm optimization and testing on a more re- 

ent hardware setup as part of our future works, which may help 

peed-up the image correction and meet the requirements of on- 

ine diagnosis (i.e. with an update rate of 10–20 FPS). 
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