920 research outputs found

    Electrochemically codeposited reduced graphene oxide and palladium nanoparticles: An efficient heterogeneous catalyst for Heck coupling reaction

    Get PDF
    AbstractThe catalytic activity of electrochemically codeposited reduced graphene oxide and palladium (ERGO-Pd) was examined for Heck coupling reactions. It showed excellent catalytic activity and stability for Heck coupling reaction. The prepared catalyst (ERGO-Pd) can be used up to the 5th cycle with negligible loss in activity

    Degradable precision polynorbornenes via ring-opening metathesis polymerization

    Get PDF
    In an attempt to introduce monomer sequence control in a growing polynorbornene via ring-opening metathesis polymerization, we employ dioxepins to efficiently determine the location of the monomers on the macromolecule backbone. Owing to the acid-labile acetal group, dioxepins allow scission of the polymer at the point of the dioxepin insertion and thus provide an indirect way to determine the monomer location. Additionally, dioxepins are used as spacers in the synthesis of multiblock polynorbornenes that are readily cleavable to afford the individual polynorbornene blocks

    Artificial neural network predication and validation of optimum suspension parameters of a passive suspension system

    Get PDF
    This paper presents the modeling and optimization of quarter car suspension system using Macpherson strut. A mathematical model of quarter car is developed, simulated and optimized in Matlab/SimulinkĀ® environment. The results are validated using test rig. The suspension system parameters are optimized using a genetic algorithm for objective functions viz. vibration dose value (VDV), frequency weighted root mean square acceleration (hereafter called as RMS acceleration), maximum transient vibration value, root mean square suspension space and root mean square tyre deflection. ISO 2631-1 standard is adopted to assess ride and health criterion. Results shows that optimum parameters provide ride comfort and health criterions over classical design. The optimization results are experimentally validated using quarter car test setup. The genetic algorithm optimization results are further extended to the artificial neural network simulation and prediction model. Artificial neural network model is carried out in Matlab/SimulinkĀ® environment and Neuro Dimensions. Simulation, experimental and predicted results are in close correlation. The optimized system reduces the values of VDV by 45%. Also, RMS acceleration is reduced by 47%. Thus, the optimized system improved ride comfort by reducing RMS acceleration and improved health criterion by reducing the VDV. Finally ANN can be used for predicting the optimum suspension parameters values with good agreement

    Efficient amine end-functionalization of living ring-Opening metathesis polymers

    Get PDF
    An efficient strategy for the synthesis of monoamine end-functionalized living polymers using ring-opening metathesis polymerization with ruthenium initiators is reported. A new end-capping agent for this purpose was synthesized, and its efficiency for end-functionalization was evaluated using two common ruthenium-based initiators. Finally, terminal cross-metathesis was also explored as another alternative toward the synthesis of amine end-functionalized polymers, and the comparison between the two techniques is presented

    Study of the Radiation-Hardness of VCSEL and PIN

    Get PDF
    The silicon trackers of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) use optical links for data transmission. An upgrade of the trackers is planned for the Super LHC (SLHC), an upgraded LHC with ten times higher luminosity. We study the radiation-hardness of VCSELs (Vertical-Cavity Surface-Emitting Laser) and GaAs and silicon PINs using 24 GeV/c protons at CERN for possible application in the data transmission upgrade. The optical power of VCSEL arrays decreases significantly after the irradiation but can be partially annealed with high drive currents. The responsivities of the PIN diodes also decrease significantly after irradiation, but can be recovered by operating at higher bias voltage. This provides a simple mechanism to recover from the radiation damage

    Surveillance of RNase P, PMMoV, and CrAssphage in wastewater as indicators of human fecal concentration across urban sewer neighborhoods, Louisville, Kentucky

    Get PDF
    Wastewater surveillance has been widely used as a supplemental method to track the community infection levels of severe acute respiratory syndrome coronavirus 2. A gap exists in standardized reporting for fecal indicator concentrations, which can be used to calibrate the primary outcome concentrations from wastewater monitoring for use in epidemiological models. To address this, measurements of fecal indicator concentration among wastewater samples collected from sewers and treatment centers in four counties of Kentucky (N = 650) were examined. Results from the untransformed wastewater data over 4 months of sampling indicated that the fecal indicator concentration of human ribonuclease P (RNase P) ranged from 5.1 Ɨ 101 to 1.15 Ɨ 106 copies/ml, pepper mild mottle virus (PMMoV) ranged from 7.23 Ɨ 103 to 3.53 Ɨ 107 copies/ml, and cross-assembly phage (CrAssphage) ranged from 9.69Ɨ103 to 1.85Ɨ108 copies/ml. The results showed both regional and temporal variability. If fecal indicators are used as normalization factors, knowing the daily sewer system flow of the sample location may matter more than rainfall. RNase P, while it may be suitable as an internal amplification and sample adequacy control, has less utility than PMMoV and CrAssphage as a fecal indicator in wastewater samples when working at different sizes of catchment area. The choice of fecal indicator will impact the results of surveillance studies using this indicator to represent fecal load. Our results contribute broadly to an applicable standard normalization factor and assist in interpreting wastewater data in epidemiological modeling and monitoring

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. Ā© 2011 Springer-Verlag

    Catalytic living ring-opening metathesis polymerization

    Get PDF
    In living ring-opening metathesis polymerization (ROMP), a transition-metalā€“carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ā€˜livingā€™ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well- defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst
    • ā€¦
    corecore