SUPPORTING INFORMATION FOR

Efficient Amine End Functionalization of Living Ring Opening Metathesis Polymers

Amit A. Nagarkar, Aurelien Crochet, Katharina M. Fromm, Andreas F. M. Kilbinger*

Department of Chemistry, University of Fribourg, Chemin du musée 9, CH-1700 Fribourg, Switzerland andreas.kilbinger@unifr.ch

Single crystal X ray diffraction

Compound **1** crystallizes in the monoclinic space group $P2_1/c$, with two molecules per asymmetric unit (Fig. 1 & S1). These two molecules are connected by H-bonds between hydrogen atoms connected to nitrogen of one molecule and oxygen atom connected to the phosphorus atom of the next molecule (Fig. S2 & S3). Angles form by oxygen atoms and phosphorus atom are $111.47(9)^\circ$ for O1–P1–O2 and $111.54(9)^\circ$ O3–P2–O4, the angles form by the two nitrogen and phosphorus atom are $104.9(1)^\circ$ for N1–P1–N2 and $108.0(1)^\circ$ for O3–P2–O4. Torsion angles between C1 and C4 and between C11 and C14 are respectively $2.4(5)^\circ$ and $3.1(5)^\circ$.

Figure S1: Molecular view of 1; 50% of probability; H-bonds are represented as blue dash bonds.

Figure S2: Molecular view of **1**; H-bonds are represented as blue dash bonds; #1: 2-x, -y, 2-z; #2: 1-x, -y, 2-z; #3: 1-x, -y-1, 2-z.

Figure S3: Molecular view of 1 along *a* axis; H-bonds are represented as blue dash bonds.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1N)O(2)#1	0.9683(18)	1.8991(14)	2.860(2)	171.55(13)	
N(2)-H(2N)O(4)#2	0.9283(18)	1.8912(15)	2.814(2)	172.74(13)	
N(3)-H(3N)O(2)	0.9266(17)	2.0364(14)	2.960(2)	174.51(12)	
N(4)-H(4N)O(4)#3	0.9383(17)	1.9629(15)	2.888(2)	168.52(11)	

Table S1. Hydrogen bonds for poph-1 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y,-z+2 #2 -x+1,-y,-z+2 #3 -x+1,-y-1,-z+2

Figure S4: 2D J-resolved ¹H NMR spectrum of the new carbene peak resulting from the addition of 1.2 equivalents of **1** to a solution of **G1** and **MNI** shown in Figure 3b.

Figure S5: *Bottom*: ¹H NMR spectra showing **G1** (20.01 ppm) and **MNI** initiated **G1** catalyst (18.93 ppm, blue). *Top:* After quenching with ethyl vinyl ether only the Fischer carbene signal (14.51 ppm, green) is observed.

Figure S6: *Bottom*: ¹H NMR spectra showing **MNI** initiated **G3** catalyst (14.28ppm). *Top*: After quenching with ethyl vinyl ether only the Fischer carbene signal (13.63 ppm) is observed.

Figure S7: MALDI FT-ICR spectrum of incomplete end functionalized polymer from 2.5 equivalents of **1** with G3 initiated polymer.

Figure S8: (*top*) Derivatization of the amine end functionalized polymer with p-nitrobenzoylchloride (*bottom*) 1 H-NMR of the derivatized polymer showing a degree of functionalization > 95%.