286 research outputs found

    Comparison of climate field reconstruction techniques: application to Europe

    Get PDF
    This paper presents a comparison of principal component (PC) regression and regularized expectation maximization (RegEM) to reconstruct European summer and winter surface air temperature over the past millennium. Reconstruction is performed within a surrogate climate using the National Center for Atmospheric Research (NCAR) Climate System Model (CSM) 1.4 and the climate model ECHO-G 4, assuming different white and red noise scenarios to define the distortion of pseudoproxy series. We show how sensitivity tests lead to valuable "a priori” information that provides a basis for improving real world proxy reconstructions. Our results emphasize the need to carefully test and evaluate reconstruction techniques with respect to the temporal resolution and the spatial scale they are applied to. Furthermore, we demonstrate that uncertainties inherent to the predictand and predictor data have to be more rigorously taken into account. The comparison of the two statistical techniques, in the specific experimental setting presented here, indicates that more skilful results are achieved with RegEM as low frequency variability is better preserved. We further detect seasonal differences in reconstruction skill for the continental scale, as e.g. the target temperature average is more adequately reconstructed for summer than for winter. For the specific predictor network given in this paper, both techniques underestimate the target temperature variations to an increasing extent as more noise is added to the signal, albeit RegEM less than with PC regression. We conclude that climate field reconstruction techniques can be improved and need to be further optimized in future application

    Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br)3_{3} perovskites

    Get PDF
    Multiple-cation mixed-halide (Cs,FA,MA)Pb(I,Br)3 perovskites containing cesium, formamidinium (FA), and methylammonium (MA) possess excellent properties for a wide range of optoelectronic applications such as thin-film photovoltaics or lasers. We investigate the role of excitons and the exciton binding energy EB, relevant for the effectiveness of charge separation in solar cells, as well as the temperature-dependent bandgap energy Eg which is used as an indicator for crystal phase transitions. Generalized Elliott fits of absorption spectra offer the possibility to determine both EB and Eg. However, since excitonic effects are non-negligible even at room temperature, a careful and detailed analysis of the spectra is crucial for a correct interpretation. Therefore, an additional evaluation based on a so-called f-sum rule is applied to achieve an improved reliability of the results at higher temperatures. The obtained EB values of 20–24 meV for Cs-containing mixed perovskite compounds are below the ones of 24–32 meV and 36–41 meV for pure methylammonium lead iodide (MAPbI3) and bromide (MAPbBr3), respectively, and, thus, facilitate charge-carrier separation in photovoltaic applications. Furthermore, temperature-dependent (T = 5–300 K) studies of Eg in (Cs,FA,MA)Pb(I,Br)3 indicate a suppressed crystal phase transition by the absence of any phase-transition related signatures such as the well-known jump of about 100 meV in MAPbI3. We verify these results using temperature-dependent electroreflectance spectroscopy, which is a very reliable technique for the direct and non-destructive determination of optical resonances of the absorber layer in complete solar cells. Additionally, we confirm the suppression of the phase transition in Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 by temperature-dependent X-ray diffraction

    Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity

    Get PDF
    There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1) 16 nuclear regulators of mitochondrial genes, (2) 91 genes for oxidative phosphorylation and (3) 966 nuclear-encoded mitochondrial genes). Gene set enrichment analysis (GSEA) showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS) data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents) and a population-based GWAS sample (KORA F4, n = 1,743). A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th) and 95(th) percentile of the set of all gene-wise corrected p-values) as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th) percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50) = 0.0103). This finding was not confirmed in the trios (p(GSEA,50) = 0.5991), but in KORA (p(GSEA,50) = 0.0398). The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50) = 0.1052, p(MAGENTA,75) = 0.0251). The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    Mutational analysis of the PITX2 coding region revealed no common cause for transposition of the great arteries (dTGA)

    Get PDF
    BACKGROUND: PITX2 is a bicoid-related homeodomain transcription factor that plays an important role in asymmetric cardiogenesis. Loss of function experiments in mice cause severe heart malformations, including transposition of the great arteries (TGA). TGA accounts for 5–7% of all congenital heart diseases affecting 0.2 per 1000 live births, thereby representing the most frequent cyanotic heart defect diagnosed in the neonatal period. METHODS: To address whether altered PITX2 function could also contribute to the formation of dTGA in humans, we screened 96 patients with dTGA by means of dHPLC and direct sequencing for mutations within the PITX2 gene. RESULTS: Several SNPs could be detected, but no stop or frame shift mutation. In particular, we found seven intronic and UTR variants, two silent mutations and two polymorphisms within the coding region. CONCLUSION: As most sequence variants were also found in controls we conclude that mutations in PITX2 are not a common cause of dTGA

    Programmed cell death ligand 1 (PD-L1, CD274) in cholangiocarcinoma – correlation with clinicopathological data and comparison of antibodies

    Get PDF
    Background: Cholangiocarcinoma (CCA) may arise in the intra- or extrahepatic biliary tract and is associated with a poor prognosis. Despite recent advances, to date there is still no established targeted therapeutic approach available. Non-surgical therapeutic agents are urgently needed, as most patients are non-eligible to surgical resection. Anti-PD-L1 therapy prevents cancer cells from evading the immune system and has emerged as a new treatment option in several cancer entities. Recently, PD-L1 expression has been analyzed in comparably small CCA patient cohorts. However, a systematic validation of different PD-L1 antibodies has not been performed in CCA so far. Methods: We stained a tissue microarray consisting of 170 patients, including 72 intrahepatic cholangiocarcinomas (iCCAs), 57 perihilar cholangiocarcinomas (pCCAs) and 41 distal cholangiocarcinomas (dCCAs) by immunohistochemistry and evaluated PD-L1 positivity in tumor and stromal cells. We analyzed three different PD-L1 antibodies (clones 28–8, SP142, and SP263) that are frequently used and recommended for predictive diagnostic testing in other cancer types. Results: For PD-L1 antibody clone SP263, 5% of iCCAs, 4% of pCCAs and 3% of dCCAs exhibited PD-L1 expression on tumor cells, thereby showing the highest frequencies of PD-L1 positivity. Accordingly, highest PD-L1 positivity rates of stromal cells with 31% in iCCA, 40% in pCCA and 61% in dCCA were detected for clone SP263. Agreement of PD-L1 positivity in tumor cells was moderate for clone 28–8 and SP263 (Îș = 0.44) and poor between 28-8 and SP142 (Îș = 0.13), as well as  SP142 and SP263 (Îș = 0.11), respectively. Statistical analyses of PD-L1 expression (clone SP263) on tumor cells with clinicopathological data revealed a positive correlation with shortened overall survival in CCA patients. Conclusions: Selection of appropriate PD-L1 antibodies and careful evaluation of immunohistochemical staining patterns have a significant impact on PD-L1 testing in CCA. Clinical trials are necessary to investigate the putative beneficial effects of PD-L1 targeted immunotherapy in CCA patients

    A widespread family of bacterial cell wall assembly proteins

    Get PDF
    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall

    Low frequency of mismatch repair deficiency in gallbladder cancer

    Get PDF
    Background: DNA mismatch repair (MMR) deficiency is a major pathway of genomic instability in cancer. It leads to the accumulation of numerous mutations predominantly at microsatellite sequences, a phenotype known as microsatellite instability (MSI). MSI tumors have a distinct clinical behavior and commonly respond well to immune checkpoint blockade, irrespective of their origin. Data about the prevalence of MSI among gallbladder cancer (GBC) have been conflicting. We here analyzed a well-characterized cohort of 69 Western-world GBCs. Methods: We analyzed the mononucleotide MSI marker panel consisting of BAT25, BAT26, and CAT25 to determine the prevalence of MMR deficiency-induced MSI. Results: MSI was detected in 1/69 (1.4%) of analyzed GBCs. The detected MSI GBC had a classical histomorphology, i.e. of acinar/tubular/glandular pancreatobiliary phenotype, and showed nuclear expression of all four MMR proteins MLH1, MSH2, MSH6, and PMS2. The MSI GBC patient showed a prolonged overall survival, despite having a high tumor stage at diagnosis. The patient had no known background or family history indicative of Lynch syndrome. Conclusions: Even though the overall number of MSI tumors is low in GBC, the potentially therapeutic benefit of checkpoint blockade in the respective patients may justify MSI analysis of GBC
    • 

    corecore