1,361 research outputs found

    Two-dimensional elemental operator for modeling the vectorial hysteresis of soft magnetic composite material

    Full text link
    © 2015 IEEE. This paper presents a two-dimensional elemental operator with biaxial anisotropy based on the physical mechanisms of the cubic textured magnetic materials, and deduces an analytical expression of the direct relationship between magnetic field strength H and magnetization M for a single elemental operator by the partial approximate substitutions. To verify the proposed model, the magnetic hysteresis of a soft magnetic composite material SOMALOYTM 500 under alternating excitations was simulated and compared with the experimental results obtained by a 3D magnetic property tester. The results suggest that the proposed approach can be a useful tool in the modeling of vectorial magnetic hysteresis and the calculation of iron loss in practical engineering electromagnetic field analysis

    Modeling the stress dependence of magnetic hysteresis based on Stoner-Wohlfarth theory

    Full text link
    © 2015 IEEE. This paper presents an improved approach for simulating magnetic hysteresis, which takes into account the effect of applied stress, based on an extended Stoner-Wohlfarth (S-W) model. Meanwhile, the S-W asteroid rotates and shrinks, and the stable direction of magnetization of the particle can be calculated from the new energy minimum conditions. This developed model is applied to analyze the magnetic hysteresis phenomenon of a soft magnetic composite (SMC) material under different compaction process, and the results of simulations are in good quantitative agreement with experimental data

    Solving integral equations in η3π\eta\to 3\pi

    Full text link
    A dispersive analysis of η3π\eta\to 3\pi decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for ω3π\omega\to 3\pi.Comment: 11 pages, 10 Figures. Version accepted for publication in EPJC. The ancillary files contain an updated set of fundamental solutions. The numerical differences to the former set are tiny, see the READMEv2 file for detail

    E1-Like Activating Enzyme Atg7 Is Preferentially Sequestered into p62 Aggregates via Its Interaction with LC3-I

    Get PDF
    p62 is constitutively degraded by autophagy via its interaction with LC3. However, the interaction of p62 with LC3 species in the context of the LC3 lipidation process is not specified. Further, the p62-mediated protein aggregation's effect on autophagy is unclear. We systemically analyzed the interactions of p62 with all known Atg proteins involved in LC3 lipidation. We find that p62 does not interact with LC3 at the stages when it is being processed by Atg4B or when it is complexed or conjugated with Atg3. p62 does interact with LC3-I and LC3-I:Atg7 complex and is preferentially recruited by LC3-II species under autophagic stimulation. Given that Atg4B, Atg3 and LC3-Atg3 are indispensable for LC3-II conversion, our study reveals a protective mechanism for Atg4B, Atg3 and LC3-Atg3 conjugate from being inappropriately sequestered into p62 aggregates. Our findings imply that p62 could potentially impair autophagy by negatively affecting LC3 lipidation and contribute to the development of protein aggregate diseases. © 2013 Gao et al

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Synthesis and Spectral Studies of CdTe–Dendrimer Conjugates

    Get PDF
    In order to couple high cellular uptake and target specificity of dendrimer molecule with excellent optical properties of semiconductor nanoparticles, the interaction of cysteine-capped CdTe quantum dots with dendrimer was investigated through spectroscopic techniques. NH2-terminated dendrimer molecule quenched the photoluminescence of CdTe quantum dots. The binding constants and binding capacity were calculated, and the nature of binding was found to be noncovalent. Significant decrease in luminescence intensity of CdTe quantum dots owing to noncovalent binding with dendrimer limits further utilization of these nanoassemblies. Hence, an attempt is made, for the first time, to synthesize stable, highly luminescent, covalently linked CdTe–Dendrimer conjugate in aqueous medium using glutaric dialdehyde (G) linker. Conjugate has been characterized through Fourier transform infrared spectroscopy and transmission electron microscopy. In this strategy, photoluminescence quantum efficiency of CdTe quantum dots with narrow emission bandwidths remained unaffected after formation of the conjugate

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi

    Corrosive-Abrasive Wear Induced by Soot in Boundary Lubrication Regime

    Get PDF
    Soot is known to induce high wear in engine components. The mechanism by which soot induces wear is not well understood. Although several mechanisms have been suggested, there is still no consensus. This study aims to investigate the most likely mechanism responsible for soot-induced wear in the boundary lubrication regime. Results from this study have shown that previously suggested mechanisms such as abrasion and additive adsorption do not fully explain the high wear observed when soot is present. Based on the results obtained from tests conducted at varying temperature and soot levels, it has been proven that the corrosive–abrasive mechanism was responsible for high wear that occurred in boundary lubrication conditions

    Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function
    corecore