101 research outputs found
A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol biodegrading agent
Microbe-based decontamination of phenol-polluted environments has significant advantages over physical and chemical approaches by being relatively cheaper and ensuring complete phenol degradation. There is a need to search for commercially prospective bacterial strains that are resistant to phenol and other co-pollutants, e.g. oil hydrocarbons, in contaminated environments, and able to carry out efficient phenol biodegradation at a variable range of concentrations. This research characterizes the phenol-biodegrading ability of a new actinobacteria strain isolated from a lubricant-contaminated soil environment. Phenotypic and phylogenetic analyses showed that the novel strain UCM Ac-603 belonged to the species Rhodococcus aetherivorans, and phenol degrading ability was quantitatively characterized for the first time. R. aetherivorans UCM Ac-603 tolerated and assimilated phenol (100% of supplied concentration) and various hydrocarbons (56.2–94.4%) as sole carbon sources. Additional nutrient supplementation was not required for degradation and this organism could grow at a phenol concentration of 500 mg L −1 without inhibition. Complete phenol assimilation occurred after 4 days at an initial concentration of 1750 mg L −1 for freely-suspended cells and at 2000 mg L −1 for vermiculite-immobilized cells: 99.9% assimilation of phenol was possible from a total concentration of 3000 mg L −1 supplied at daily fractional phenol additions of 750 mg L −1 over 4 days. In terms of phenol degradation rates, R. aetherivorans UCM Ac-602 showed efficient phenol degradation over a wide range of initial concentrations with the rates (e.g. 35.7 mg L −1 h −1 at 500 mg L −1 phenol, and 18.2 mg L −1 h −1 at 1750 mg L −1 phenol) significantly exceeding (1.2–5 times) reported data for almost all other phenol-assimilating bacteria. Such efficient phenol degradation ability compared to currently known strains and other beneficial characteristics of R. aetherivorans UCM Ac-602 suggest it is a promising candidate for bioremediation of phenol-contaminated environments. </p
Design Of Two Step Deterministic Interleaver For Turbo Codes
The performance and design of a deterministic interleaver for short frame turbo codes is considered in this paper. The main characteristic of this class of deterministic interleaver is that their algebraic design selects the best permutation generator such that the points in smaller subsets of the interleaved output are uniformly spread over the entire range of the information data frame. It is observed that the interleaver designed in this manner improves the minimum distance of first few spectral lines of minimum distance spectrum. Finally we introduce a circular shift in the permutation function to reduce the correlation between the parity bits corresponding to the original and interleaved data frames to improve the decoding capability of MAP decoder. The design is focused on combining good permutations with de-correlation property. Our solution to design a deterministic interleaver outperforms the semi-random interleavers and the deterministic interleavers reported in the literature
Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida)
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of ‘taxonomics’. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from highthroughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research
A Common-Ground-Type Five-Level Inverter with Dynamic Voltage Boost
Today, transformerless inverters (TIs) are widely applicable in different solar photovoltaic (PV) grid-connected applications owing to their promising features, such as higher efficiency and power density. However, high-frequency common-mode voltage (CMV) in these topologies can result in high leakage current, electromagnetic interference, and lack of safety, reducing the whole system’s reliability. To resolve the problems associated with TIs, this paper proposes a novel hybrid switched capacitor (SC)-based common-ground (CG) transformerless inverter (TI) topology, which can be applied in grid-connected photovoltaic (PV) applications. The boost inductor is integrated to achieve continuous input current and dynamic voltage gain. In addition, the proposed circuit comprises nine switches and two SCs with a single input DC source. It can generate five-level AC voltage with voltage boosting within a single-stage DC–AC power conversion. The working principles of the proposed topology, circuit description, and control technique are presented. Furthermore, the proposed inverter is comprehensively compared with other five-level TIs to show its superiority. Finally, a laboratory prototype is developed and tested to validate the practical viability of the proposed configuration
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Erratum. Blood and Islet Phenotypes Indicate Immunological Heterogeneity in Type 1 Diabetes. Diabetes 2014;63:3835–3845
The article to which this is the erratum is available in ORE at: http://hdl.handle.net/10871/17968In the article, there are two errors in the research design and methods section.
In the section with the heading “Studies on Islet-Infiltrating Leukocytes,” the antibody listed as #M0701 should be attributed to Dako and not to Abcam and the Abcam rabbit anti-CD8 catalogue number should read #ab4055 and not #GR404-4.
The online version reflects these changes
Prevalence and socio-demographic correlates of stunting and thinness among Pakistani primary school children
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Reduced Resolution Depth Coding for Stereoscopic 3D Video
In this paper, Reduced Resolution Depth Compression (RRDC) is proposed for Scalable Video Coding (SVC) to improve the 3D video rate distortion performance. RRDC is applied by using Down-Sampling and Up-Sampling (DSUS) of the depth data of the stereoscopic 3D video. The depth data is down-sampled before SVC encoding and up-sampled after SVC decoding operation. The proposed DSUS method reduces the overall bit rates and consequently: 1) improves SVC rate distortion for 3D video, particularly at lower bit rates in error free channels; and 2) improves 3D SVC performance for 3D transmission in error prone channels. The objective quality evaluation of the stereoscopic 3D video yields higher PSNR values at low bit rates for SVC-DSUS compared to the original SVC (SVC-Org), which makes it advantageous in terms of reduced storage and bandwidth requirements. Moreover, the subjective quality evaluation of the stereoscopic 3D video further confirmed that the perceived stereoscopic 3D video quality of the SVC-DSUS is very similar to the stereoscopic 3D video of the SVC-Org by up to 98.2%.(1
- …
