1,241 research outputs found

    Laser cooling of a diatomic molecule

    Full text link
    It has been roughly three decades since laser cooling techniques produced ultracold atoms, leading to rapid advances in a vast array of fields. Unfortunately laser cooling has not yet been extended to molecules because of their complex internal structure. However, this complexity makes molecules potentially useful for many applications. For example, heteronuclear molecules possess permanent electric dipole moments which lead to long-range, tunable, anisotropic dipole-dipole interactions. The combination of the dipole-dipole interaction and the precise control over molecular degrees of freedom possible at ultracold temperatures make ultracold molecules attractive candidates for use in quantum simulation of condensed matter systems and quantum computation. Also ultracold molecules may provide unique opportunities for studying chemical dynamics and for tests of fundamental symmetries. Here we experimentally demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using an optical cycling scheme requiring only three lasers, we have observed both Sisyphus and Doppler cooling forces which have substantially reduced the transverse temperature of a SrF molecular beam. Currently the only technique for producing ultracold molecules is by binding together ultracold alkali atoms through Feshbach resonance or photoassociation. By contrast, different proposed applications for ultracold molecules require a variety of molecular energy-level structures. Our method provides a new route to ultracold temperatures for molecules. In particular it bridges the gap between ultracold temperatures and the ~1 K temperatures attainable with directly cooled molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams). Ultimately our technique should enable the production of large samples of molecules at ultracold temperatures for species that are chemically distinct from bialkalis.Comment: 10 pages, 7 figure

    A Bright, Slow Cryogenic Molecular Beam Source for Free Radicals

    Full text link
    We demonstrate and characterize a cryogenic buffer gas-cooled molecular beam source capable of producing bright beams of free radicals and refractory species. Details of the beam properties (brightness, forward velocity distribution, transverse velocity spread, rotational and vibrational temperatures) are measured under varying conditions for the molecular species SrF. Under typical conditions we produce a beam of brightness 1.2 x 10^11 molecules/sr/pulse in the rovibrational ground state, with 140 m/s forward velocity and a rotational temperature of approximately 1 K. This source compares favorably to other methods for producing beams of free radicals and refractory species for many types of experiments. We provide details of construction that may be helpful for others attempting to use this method.Comment: 15 pages, 14 figure

    Formation and dynamics of van der Waals molecules in buffer-gas traps

    Full text link
    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxations are too slow to affect trap lifetimes. However, helium-3-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag3He molecules, using ab initio calculation of Ag-He interaction potentials and spin interactions, quantum scattering theory, and direct Monte Carlo simulations to describe formation and spin relaxation in this system. The calculated rate of spin-change agrees quantitatively with experimental observations, providing indirect evidence for molecular formation in buffer-gas-cooled magnetic traps.Comment: 20 pages, 13 figure

    Overexpression of specific CD44 isoforms is associated with aggressive cell features in acquired endocrine resistance

    Get PDF
    While endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers. Here, we have investigated further the role of two specific CD44 isoforms, CD44v3 and CD44v6, in the endocrine-resistant phenotype. Our data revealed that overexpression of CD44v6, but not CD44v3, in endocrine-sensitive MCF-7 cells resulted in a gain in EGFR signaling, enhanced their endogenous invasive capacity, and attenuated their response to endocrine treatment. Suppression of CD44v6 in endocrine-resistant cell models was associated with a reduction in their invasive capacity. Our data suggest that upregulation of CD44v6 in acquired resistant breast cancer may contribute to a gain in the aggressive phenotype of these cells and loss of endocrine response through transactivation of the EGFR pathway. Future therapeutic targeting of CD44v6 may prove to be an effective strategy alongside EGFR-targeted agents in delaying/preventing acquired resistance in breast cancer

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take

    The effects of different types of organisational workplace mental health interventions on mental health and wellbeing in healthcare workers: a systematic review

    Get PDF
    Objective To determine if and which types of organisational interventions conducted in small and medium size enterprises (SMEs) in healthcare are effective on mental health and wellbeing. Methods Following PRISMA guidelines, we searched six scientific databases, assessed the methodological quality of eligible studies using QATQS and grouped them into six organisational intervention types for narrative synthesis. Only controlled studies with at least one follow-up were eligible. Results We identified 22 studies (23 articles) mainly conducted in hospitals with 16 studies rated of strong or moderate methodological quality. More than two thirds (68%) of the studies reported improvements in at least one primary outcome (mental wellbeing, burnout, stress, symptoms of depression or anxiety), most consistently in burnout with eleven out of thirteen studies. We found a strong level of evidence for the intervention type “Job and task modifications” and a moderate level of evidence for the types “Flexible work and scheduling” and “Changes in the physical work environment”. For all other types, the level of evidence was insufficient. We found no studies conducted with an independent SME, however five studies with SMEs attached to a larger organisational structure. The effectiveness of workplace mental health interventions in these SMEs was mixed. Conclusion Organisational interventions in healthcare workers can be effective in improving mental health, especially in reducing burnout. Intervention types where the change in the work environment constitutes the intervention had the highest level of evidence. More research is needed for SMEs and for healthcare workers other than hospital-based physicians and nurses

    The effects of different types of organisational workplace mental health interventions on mental health and wellbeing in healthcare workers: a systematic review

    Get PDF
    Objective To determine if and which types of organisational interventions conducted in small and medium size enterprises (SMEs) in healthcare are effective on mental health and wellbeing. Methods Following PRISMA guidelines, we searched six scientific databases, assessed the methodological quality of eligible studies using QATQS and grouped them into six organisational intervention types for narrative synthesis. Only controlled studies with at least one follow-up were eligible. Results We identified 22 studies (23 articles) mainly conducted in hospitals with 16 studies rated of strong or moderate methodological quality. More than two thirds (68%) of the studies reported improvements in at least one primary outcome (mental wellbeing, burnout, stress, symptoms of depression or anxiety), most consistently in burnout with eleven out of thirteen studies. We found a strong level of evidence for the intervention type “Job and task modifications” and a moderate level of evidence for the types “Flexible work and scheduling” and “Changes in the physical work environment”. For all other types, the level of evidence was insufficient. We found no studies conducted with an independent SME, however five studies with SMEs attached to a larger organisational structure. The effectiveness of workplace mental health interventions in these SMEs was mixed. Conclusion Organisational interventions in healthcare workers can be effective in improving mental health, especially in reducing burnout. Intervention types where the change in the work environment constitutes the intervention had the highest level of evidence. More research is needed for SMEs and for healthcare workers other than hospital-based physicians and nurses.Additional co-authors: Katharina Schnitzspahn, Mónika Ditta Tóth, Chantal van Audenhove, Jaap van Weeghel, Kristian Wahlbeck, Ella Arensman, Birgit A. Greiner & MENTUPP consortium member

    Microarray Analysis Reveals Distinct Gene Expression Profiles Among Different Tumor Histology, Stage and Disease Outcomes in Endometrial Adenocarcinoma

    Get PDF
    Endometrial cancer is the most common gynecologic malignancy in developed countries and little is known about the underlying mechanism of stage and disease outcomes. The goal of this study was to identify differentially expressed genes (DEG) between late vs. early stage endometrioid adenocarcinoma (EAC) and uterine serous carcinoma (USC), as well as between disease outcomes in each of the two histological subtypes.Gene expression profiles of 20 cancer samples were analyzed (EAC = 10, USC = 10) using the human genome wide illumina bead microarrays. There was little overlap in the DEG sets between late vs. early stages in EAC and USC, and there was an insignificant overlap in DEG sets between good and poor prognosis in EAC and USC. Remarkably, there was no overlap between the stage-derived DEGs and the prognosis-derived DEGs for each of the two histological subtypes. Further functional annotation of differentially expressed genes showed that the composition of enriched function terms were different among different DEG sets. Gene expression differences for selected genes of various stages and outcomes were confirmed by qRT-PCR with a high validation rate.This data, although preliminary, suggests that there might be involvement of distinct groups of genes in tumor progression (late vs. early stage) in each of the EAC and USC. It also suggests that these genes are different from those involved in tumor outcome (good vs. poor prognosis). These involved genes, once clinically verified, may be important for predicting tumor progression and tumor outcome

    Seasonality in pulmonary tuberculosis among migrant workers entering Kuwait

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is paucity of data on seasonal variation in pulmonary tuberculosis (TB) in developing countries contrary to recognized seasonality in the TB notification in western societies. This study examined the seasonal pattern in TB diagnosis among migrant workers from developing countries entering Kuwait.</p> <p>Methods</p> <p>Monthly aggregates of TB diagnosis results for consecutive migrants tested between January I, 1997 and December 31, 2006 were analyzed. We assessed the amplitude (<it>α</it>) of the sinusoidal oscillation and the time at which maximum (<it>θ</it>°) TB cases were detected using Edwards' test. The adequacy of the hypothesized sinusoidal curve was assessed by <it>χ</it><sup>2 </sup>goodness-of-fit test.</p> <p>Results</p> <p>During the 10 year study period, the proportion (per 100,000) of pulmonary TB cases among the migrants was 198 (4608/2328582), (95% confidence interval: 192 – 204). The adjusted mean monthly number of pulmonary TB cases was 384. Based on the observed seasonal pattern in the data, the maximum number of TB cases was expected during the last week of April (<it>θ</it>° = 112°; <it>P </it>< 0.001). The amplitude (± se) (<it>α </it>= 0.204 ± 0.04) of simple harmonic curve showed 20.4% difference from the mean to maximum TB cases. The peak to low ratio of adjusted number of TB cases was 1.51 (95% CI: 1.39 – 1.65). The <it>χ</it><sup>2 </sup>goodness-of-test revealed that there was no significant (<it>P </it>> 0.1) departure of observed frequencies from the fitted simple harmonic curve. Seasonal component explained 55% of the total variation in the proportions of TB cases (100,000) among the migrants.</p> <p>Conclusion</p> <p>This regularity of peak seasonality in TB case detection may prove useful to institute measures that warrant a better attendance of migrants. Public health authorities may consider re-allocation of resources in the period of peak seasonality to minimize the risk of <it>Mycobacterium tuberculosis </it>infection to close contacts in this and comparable settings in the region having similar influx of immigrants from high TB burden countries. Epidemiological surveillance for the TB risk in the migrants in subsequent years and required chemotherapy of detected cases may contribute in global efforts to control this public health menace.</p

    A second base pair interaction between U3 small nucleolar RNA and the 5′-ETS region is required for early cleavage of the yeast pre-ribosomal RNA

    Get PDF
    In eukaryotes, U3 snoRNA is essential for pre-rRNA maturation. Its 5′-domain was found to form base pair interactions with the 18S and 5′-ETS parts of the pre-rRNA. In Xenopus laevis, two segments of U3 snoRNA form base-pair interactions with the 5′-ETS region and only one of them is essential to the maturation process. In Saccharomyces cerevisiae, two similar U3 snoRNA–5′ ETS interactions are possible; but, the functional importance of only one of them had been tested. Surprisingly, this interaction, which corresponds to the non-essential one in X. laevis, is essential for cell growth and pre-rRNA maturation in yeast. In parallel with [Dutca et al. (2011) The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Research, 39, 5164–5180], here we show, that the second possible 11-bp long interaction between the 5′ domain of S. cerevisiae U3 snoRNA and the pre-rRNA 5′-ETS region (helix VI) is also essential for pre-rRNA processing and cell growth. Compensatory mutations in one-half of helix VI fully restored cell growth. Only a partial restoration of growth was obtained upon extension of compensatory mutations to the entire helix VI, suggesting sequence requirement for binding of specific proteins. Accordingly, we got strong evidences for a role of segment VI in the association of proteins Mpp10, Imp4 and Imp3
    corecore