443 research outputs found

    Mechanisms of Interstitial Flow-Induced Remodeling of Fibroblast-Collagen Cultures

    Get PDF
    Interstitial fluid flow, critical for macromolecular transport, was recently shown to drive fibroblast differentiation and perpendicular cell and matrix alignment in 3D collagen cultures. Here we explore the mechanisms underlying this flow-induced cell and collagen alignment. Cell and matrix alignment was assessed from 3D confocal reflectance stacks using a Fast Fourier Transform method. We found that human dermal and lung fibroblasts align perpendicular to flow in the range of 5-13μm/s (0.1-0.3dyn/cm2) in collagen; however, neither cells nor matrix fibers align in fibrin cultures, which unlike collagen, is covalently cross-linked and generally degraded by cell fibrinolysis. We also found that even acellular collagen matrices align weakly upon exposure to flow. Matrix alignment begins within 12h of flow onset and continues, along with cell alignment, over 48h. Together, these data suggest that interstitial flow first induces collagen fiber alignment, providing contact guidance for the cells to orient along the aligned matrix; later, the aligned cells further remodel and align their surrounding matrix fibers. These findings help elucidate the effects of interstitial flow on cells in matrices and have relevance physiologically in tissue remodeling and in tissue engineering application

    Mechanisms of interstitial flow-induced remodeling of fibroblast-collagen cultures

    Get PDF
    Interstitial fluid flow, critical for macromolecular transport, was recently shown to drive fibroblast differentiation and perpendicular cell and matrix alignment in 3D collagen cultures. Here we explore the mechanisms underlying this flow-induced cell and collagen alignment. Cell and matrix alignment was assessed from 3D confocal reflectance stacks using a Fast Fourier Transform method. We found that human dermal and lung fibroblasts align perpendicular to flow in the range of 5-13 mum/s (0.1-0.3 dyn/cm(2)) in collagen; however, neither cells nor matrix fibers align in fibrin cultures, which unlike collagen, is covalently cross-linked and generally degraded by cell fibrinolysis. We also found that even acellular collagen matrices align weakly upon exposure to flow. Matrix alignment begins within 12 h of flow onset and continues, along with cell alignment, over 48 h. Together, these data suggest that interstitial flow first induces collagen fiber alignment, providing contact guidance for the cells to orient along the aligned matrix; later, the aligned cells further remodel and align their surrounding matrix fibers. These findings help elucidate the effects of interstitial flow on cells in matrices and have relevance physiologically in tissue remodeling and in tissue engineering application

    X-ray analysis of the proper motion and pulsar wind nebula for PSR J1741-2054

    Get PDF
    We obtained six observations of PSR J1741-2054 using the ChandraChandra ACIS-S detector totaling ∼\sim300 ks. By registering this new epoch of observations to an archival observation taken 3.2 years earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at μ=109±10mas yr−1\mu =109 \pm 10 {\rm mas\ yr}^{-1} in a direction consistent with the symmetry axis of the observed Hα\alpha nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index Γ\Gamma=2.68±\pm0.04, plus a blackbody with an emission radius of (4.5−2.5+3.2)d0.38^{+3.2}_{-2.5})d_{0.38} km, for a DM-estimated distance of 0.38d0.380.38d_{0.38} kpc and a temperature of 61.7±3.061.7\pm3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of Γ\Gamma = 1.67±\pm0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.Comment: 7 pages, 8 figures, 4 Tables; Accepted by Ap

    Deep Chandra Observations of the Pulsar Wind Nebula Created by PSR B0355+54

    Get PDF
    We report on Chandra X-ray Observatory (CXO) observations of the pulsar wind nebula (PWN) associated with PSR B0355+54 (eight observations with a 395 ks total exposure, performed over an 8 month period). We investigated the spatial and spectral properties of the emission coincident with the pulsar, compact nebula (CN), and extended tail. We find that the CN morphology can be interpreted in a way that suggests a small angle between the pulsar spin axis and our line-of-sight, as inferred from the radio data. On larger scales, emission from the 7' (2 pc) tail is clearly seen. We also found hints of two faint extensions nearly orthogonal to the direction of the pulsar's proper motion. The spectrum extracted at the pulsar position can be described with an absorbed power-law + blackbody model. The nonthermal component can be attributed to magnetospheric emission, while the thermal component can be attributed to emission from either a hot spot (e.g., a polar cap) or the entire neutron star surface. Surprisingly, the spectrum of the tail shows only a slight hint of cooling with increasing distance from the pulsar. This implies either a low magnetic field with fast flow speed, or particle re-acceleration within the tail. We estimate physical properties of the PWN and compare the morphologies of the CN and the extended tail with those of other bow shock PWNe observed with long CXO exposures.Comment: 11 pages, 8 figure

    K+ to pi-mu+mu+ and doubly-charged Higgs

    Full text link
    The rate for the lepton-number-violating decay K+ to pi- mu+mu+ is calculated in a model which incorporates doubly-charged Higgs bosons. We find that for reasonable values of the parameters the decay branching ratio may be as large as 2E-16. Although this is a discouragingly small number, it is of the same order of magnitude as the rate mediated by massive Majorana neutrinos.Comment: 8 pages, RevTex, Figure1 is P

    Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling

    Get PDF
    Lymphangiogenesis occurs in inflammation and wound healing, yet its functional roles in these processes are not fully understood. Consequently, clinically relevant strategies for therapeutic lymphangiogenesis remain underdeveloped, particularly using growth factors. To achieve controlled, local capillary lymphangiogenesis with protein engineering and determine its effects on fluid clearance, leukocyte trafficking, and wound healing, we developed a fibrin-binding variant of vascular endothelial growth factor C (FB-VEGF-C) that is slowly released upon demand from infiltrating cells. Using a novel wound healing model, we show that implanted fibrin containing FB-VEGF-C, but not free VEGF-C, could stimulate local lymphangiogenesis in a dose-dependent manner. Importantly, the effects of FB-VEGF-C were restricted to lymphatic capillaries, with no apparent changes to blood vessels and downstream collecting vessels. Leukocyte intravasation and trafficking to lymph nodes were increased in hyperplastic lymphatics, while fluid clearance was maintained at physiological levels. In diabetic wounds, FB-VEGF-C-induced lymphangiogenesis increased extracellular matrix deposition and granulation tissue thickening, indicators of improved wound healing. Together, these results indicate that FB-VEGF-C is a promising strategy for inducing lymphangiogenesis locally, and that such lymphangiogenesis can promote wound healing by enhancing leukocyte trafficking without affecting downstream lymphatic collecting vessels. (C) 2017 The Authors. Published by Elsevier Ltd

    Treasure codes: augmenting learning from physical museum exhibits through treasure hunting

    Get PDF
    Previous studies have highlighted the difficulty that designers face in creating mobile museum guides to enhance small group experiences. In this paper, we report a study exploring the potential of mobile visual recognition technology (Artcodes) to improve users’ experiences in a visitor centre. A prototype mobile guide in the form of a treasure hunt was developed and evaluated by means of a field study comparing this technology with the existing personal guided tour. The results reveal a preference for the mobile guide amongst participants and show significant learning gains from pre-test to post-test compared with the pre-existing personal tour. Our observational analyses indicate how the mobile guide can be used to improve visitors’ learning experiences by supporting active discovery and by balancing physical and digital interactions. We further expand the concept of design trajectories to consider micro-scaffolding as a way of understanding and designing future public technologies

    Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1.

    Get PDF
    Fibroblasts are the major cellular component of connective tissue and experience mechanical perturbations due to matrix remodelling and interstitial fluid movement. Transforming growth factor β1 (TGF-β1) can promote differentiation of fibroblasts in vitro to a contractile myofibroblastic phenotype characterised by the presence of α-smooth muscle actin (α-SMA) rich stress fibres. To study the role of mechanical stimulation in this process, we examined the response of primary human fibroblasts to physiological levels of fluid movement and its influence on fibroblast differentiation and responses to TGF-β1. We report that in both oral and dermal fibroblasts, physiological levels of fluid flow induced widespread changes in gene expression compared to static cultures, including up-regulation of genes associated with TGFβ signalling and endocytosis. TGF-β1, activin A and markers of myofibroblast differentiation including α-SMA and collagen IA1 were also increased by flow but surprisingly the combination of flow and exogenous TGF-β1 resulted in reduced differentiation. Our findings suggest this may result from enhanced internalisation of caveolin and TGF-β receptor II. These findings suggest that a) low levels of fluid flow induce myofibroblast differentiation and b) fluid flow antagonises the fibroblast response to pro-differentiation signals such as TGF-β1. We propose that this may be a novel mechanism by which mechanical forces buffer responses to chemical signals in vivo, maintaining a context-specific fibroblast phenotype. This article is protected by copyright. All rights reserved
    • …
    corecore