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a b s t r a c t

Lymphangiogenesis occurs in inflammation and wound healing, yet its functional roles in these pro-
cesses are not fully understood. Consequently, clinically relevant strategies for therapeutic lym-
phangiogenesis remain underdeveloped, particularly using growth factors. To achieve controlled, local
capillary lymphangiogenesis with protein engineering and determine its effects on fluid clearance,
leukocyte trafficking, and wound healing, we developed a fibrin-binding variant of vascular endothelial
growth factor C (FB-VEGF-C) that is slowly released upon demand from infiltrating cells. Using a novel
wound healing model, we show that implanted fibrin containing FB-VEGF-C, but not free VEGF-C, could
stimulate local lymphangiogenesis in a dose-dependent manner. Importantly, the effects of FB-VEGF-C
were restricted to lymphatic capillaries, with no apparent changes to blood vessels and downstream
collecting vessels. Leukocyte intravasation and trafficking to lymph nodes were increased in hyperplastic
lymphatics, while fluid clearance was maintained at physiological levels. In diabetic wounds, FB-VEGF-C-
induced lymphangiogenesis increased extracellular matrix deposition and granulation tissue thickening,
indicators of improved wound healing. Together, these results indicate that FB-VEGF-C is a promising
strategy for inducing lymphangiogenesis locally, and that such lymphangiogenesis can promote wound
healing by enhancing leukocyte trafficking without affecting downstream lymphatic collecting vessels.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Lymphatic vessels provide transport routes for immune cells,
macromolecules and fluid from the periphery of the body to the
lymph nodes and eventually back to the blood. In addition,
lymphatic endothelial cells (LECs) can modulate immune cell traf-
ficking and function by secreting chemokines, regulating surface

and junctional adhesion molecules for leukocyte transmigration,
expressing stimulatory and inhibitory receptors, and presenting
antigens to T cells [1,2]. Lymphatic vessel expansion, also called
lymphangiogenesis, is driven by multiple factors, including VEGF-C
and VEGF-D, which are ligands of vascular endothelial growth
factor receptor 3 (VEGFR-3) [3,4]. Lymphangiogenesis occurs post-
developmentally in wound healing, chronic inflammation, and
cancer [5].

In dermal wound healing, a tissue-deposited fibrin clot is
initially infiltrated by innate immune cells (i.e., neutrophils,
monocytes, and macrophages) to be populated by anti-inflamma-
tory macrophages and myofibroblasts. These healing-specific con-
tractile cells cleave fibrin and remodel the new matrix in wounds,
and their population declines when the mechanical tension is
removed [6]. The appearance of myofibroblasts is followed by an
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ingrowth of transient blood vessels to meet increasing demands for
oxygen and nutrients for the support and surveillance of tissue
repair. Mechanisms of rapid restoration of blood circulation in
wound healing include tension-dependent looping angiogenesis
with sprouting and intussusception [7,8]. In contrast, lymphatic
vessel regeneration is less well studied [9,10]. Therefore, even
though it is well established that lymphangiogenesis follows
angiogenesis in wound healing [11e13], the precise roles for the
restored lymphatic vasculature in wound healing remain unclear.

We previously showed that increased interstitial fluid flow, such
as that generated in inflamed or healing tissues, can stimulate
myofibroblasts differentiation and matrix alignment [14]. In turn,
this could increase directional wound contractility and vasculari-
zation, possibly through a force-dependent vessel looping mecha-
nism that accelerates the healing process [6,15]. We assume that
wound-associated lymphangiogenesis could alter immune cell
trafficking from the wound, since lymphatic expression of adhesion
molecules like E-selectin and ICAM-1 regulate leukocyte emigra-
tion [16], along with Lyve-1, a hyaluronan receptor expressed pre-
dominantly on initial lymphatics [17]. In turn, changes in leukocyte
trafficking could affect the local profiles of cell-derived signals and
the production of cytokines and growth factors that directly stim-
ulate matrix remodeling.

Previously, it was shown that reduced lymphatic vessel forma-
tion contributes to impaired diabetic skin wound healing [18].
However, few studies have explored therapeutic lymphangio-
genesis as a potential means to improve healing in such diabetic
wounds, which are resistant to healing and develop high interstitial
fluid pressure [19,20]. In models where lymphatic vessels were
ablated, local delivery of recombinant VEGF-C was shown to
improve healing and reduce tissue edema [21], and adenovirally
delivered VEGF-C expedited reconnection of lymphatic vessels after
lymph node dissection [19]. Interestingly, adenoviral over-
expression of VEGF-C in skin diabetic wounds was shown to
stimulate their healing, predominantly by the activation of blood
vessel angiogenesis and local attraction of macrophages [20]. These
results established the therapeutic potential of VEGF-C.

The local delivery of lymphangiogenic growth factors remains a
challenge in clinical translation. To date, most studies with in vivo
delivery of VEGF-C to induce lymphangiogenesis have used
adenoviral vectors [10]. However, with viral vectors it is difficult to
control dose, and the risk of unpredictable immune responses
against the virus-based vehicles is an obstacle for patient trans-
lation [22]. For protein delivery, wild-type proteins rapidly diffuse
from the injection site and cannot be maintained locally for more
than a day [23], and repeated high-dose administration of VEGF-C
could lead to edema and venous enlargement because higher doses
of VEGF-C can induce pathological permeability and hyperplasia of
blood vessels [24,25] as well as dysfunctional remodeling of

collecting lymphatic vessels [19,26].
Over the last two decades, new approaches used in growth

factor engineering for wound healing have been developed [23,27].
In particular, the immobilization of a growth factor to a biopolymer
or to extracellular matrix components enables its local and cell-
demanded release by augmenting its binding to cell surface re-
ceptors and creating local gradients that mimic those of endoge-
nously released growth factors within the extracellular
environment [28]. Onewell-establishedmethod is the recombinant
fusion of a substrate sequence for the coagulation transglutaminase
Factor XIIIa (FXIIIa), the substrate being derived from a2-plasmin
inhibitor (a2-PI, where the substrate is a2-PI1-8), to exogenous
growth factors. These growth factors can then be covalently
attached to fibrin through FXIIIa during polymerization and are
released only when fibrin is proteolytically cleaved during
remodeling [29]. This approach diminishes the need for the
application of high doses of growth factors and prevents growth
factor toxicity. Furthermore, the fibrin matrix supports cell migra-
tion and proliferation and is completely cleared when healing is
completed [30]. Nevertheless, no strategy that immobilizes VEGF-C
within the fibrin matrix has been implemented for lymphangio-
genic therapy.

Here, we developed a fibrin-binding VEGF-C variant, in which
the FXIIIa substrate sequence a2-PI1-8 and a matrix metal-
loproteinase (MMP)-degradable domain are inserted, and explore
its therapeutic applications. With this design, VEGF-C can be
released by either the plasmin-mediated cleavage of fibrin orMMP-
mediated cleavage of the substrate peptide fused between a2-PI1-8
and VEGF-C, referred to as FB-VEGF-C. We found that new func-
tional initial lymphatic vessels could be specifically induced with a
low-dose, single implantation of FB-VEGF-C in a subcutaneous
cartilage-replacement healing model. The pro-lymphangiogenic
effects were local and only affected lymphatic capillaries, not
downstream collecting vessels, which further provided the op-
portunity to conduct a comprehensive study of the morphology
and function of the newly formed lymphatic capillaries. To do that,
we developed a functional assay that tests the ability of newly
formed initial vessels to attract dendritic cells (DC) and further
evacuate them from the healed wound to the draining lymph node.
We also established an imaging method for the morphological
analysis of the entire draining collecting vessel system, from the
initial lymphatic bed down to the draining lymph node. Finally, we
designed an assay that aimed to quantify lymphatic fluid drainage
at the physiological interstitial fluid pressure, or without an injec-
tion swelling pressure, which would reveal dysfunctions in the
lymphatic vasculature. Similarly to the newly formed lymphatics in
control wounds, hyperplastic lymphatics in FB-VEGF-C-healed
wounds attracted DCs that could transmigrate to the lymphatic
lumen. The net migration towards the draining lymph node was
increased via FB-VEGF-C-healed lymphatics, while the lymphatic
clearance remained unchanged. Importantly, in diabetic mice, the
local delivery of FB-VEGF-C in impaired wounds improved granu-
lation tissue (GT) formation and increased the interaction of im-
mune cells with activated lymphatic vessels. Together, these
findings suggest that FB-VEGF-C is effective at inducing lym-
phangiogenesis locally, only within initial lymphatics, and such
engineered local lymphangiogenesis holds therapeutic promise for
impaired wound healing.

2. Methods

2.1. Mice

All experiments were carried out according to a protocol
approved by the Committee for Animal Experiments for the Canton

Non-standard abbreviations and acronyms

FB-VEGF-C Fibrin-binding variant of vascular endothelial
growth factor C

LECs Lymphatic endothelial cells
VEGFR-3 Vascular endothelial growth factor receptor 3
MMP Matrix metalloproteinase
FXIIIa Factor XIIIa
a2-PI a2-plasmin inhibitor
GT Granulation tissue
DC Dendritic cells
BECs Blood endothelial cells
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Vaud, Switzerland. 8-12-week-old female Balb/c mice (Charles
River, Orleans, France) were used for all studies except for the full
thickness diabetic wound healing studies, where C57BLKS/J-m/Lepr
db (db/db) mice were used.

2.2. Cell culture

Human dermal LECs were isolated from neonatal foreskin using
anti-CD31 and anti-podoplanin antibodies (Invitrogen, Carlsbad,
CA), and authenticated as described earlier [31]. Cells were
expanded on collagen-coated flasks in basal endothelial cell me-
dium (Lonza, Verviers, Belgium) supplemented with 20% fetal
bovine serum (FBS, Gibco Invitrogen, Grand Island, NY) and 1 mg/
ml hydrocortisone acetate (Sigma-Aldrich, St. Louis, MO), 25 mg/ml
dibutyril cAMP (Sigma-Aldrich), and 1% penicillin, streptomycin,
amphotericin (Invitrogen). Cells were grown at 37 �C in a 5% CO2
incubator and were used at passage 6e9. Cells tested negative for
mycoplasma contamination.

2.3. Cloning of VEGF-C variants

The transglutaminase substrate domain from a2-plasmin in-
hibitor a2PI1-8; NQEQVSPL [32], and the MMP degradable domain
derived from peptide library (GPQGIWGQ) [33] were fused to the
N-terminus of VEGF-C. FB*-VEGF-C (a2PI1-8-VEGF-C), FB-VEGF-C
(a2PI1-8-MMP-VEGF-C) and VEGF-Cwere expressed in HEK293 cells
by insertion of the pXLG vector expressing cDNA with the addition
of an N-terminus 8� His-tag. Protein was purified using a HisTrap
HP™ column (GE Healthcare, Glattbrugg, Switzerland). Low endo-
toxin levels (EU < 0.1 per dose administration) were confirmed by
endotoxin in HEK-Blue hTLR 4 cells from InvivoGen (San Diego, CA).
The concentration of the proteinwas determined using a Nanodrop
spectrophotometer (Thermo Scientific, Waltham, MA) and protein
molecular weight. The purity was verified by SDS-PAGE and Sim-
plyBlue SafeStain (Invitrogen).

2.4. VEGFR-3 phosphorylation assay

LECs were seeded in 6-well plates (7.5 � 104 cells per well) and
starved in medium containing 1% serum overnight followed by
serum-free medium containing 0.5% bovine serum albumin (BSA)
(Sigma-Aldrich) for 4 h before the stimulation. 100 ng/ml of each of
the VEGF-C variants (VEGF-C, FB*-VEGF-C or FB-VEGF-C) was
applied to the cells for 5,10 and 15min. Cells werewashedwith ice-
cold phosphate buffered saline (PBS) and immediately lysed in 1%
NP-40, 20 mM Tris (pH 8.0), and 137 mM NaCl. A solution of 10%
Glycerol, 2 mM EDTA, 1 mM activated sodium orthovanadate and
EDTA free protease cocktail inhibitors (Roche Diagnostics, Man-
nheim, Germany) at 4 �Cwas then added and kept on ice for 15min.
Samples were stored at �80 �C before VEGFR-3 phosphorylation
was measured using Human Phospho-VEGFR3/Flt-4 ELISA kits
(R&D Systems, Minneapolis, MN).

2.5. Cell proliferation assay

5� 103 cells were seeded in a 96-well plate and starved with 2%
FBS overnight. Cells were then washed with PBS and stimulated
with 100 ng/ml of each of the VEGF-C variants in 0.5% BSA for 24 h.
AlamarBlue (AbD Serotec, Raleigh, NC) reagent was added to 10% of
the total volume and cells were incubated at 37 �C for 4 h before the
end of the experiment. The fluorescence change due to metabolic
activity was measured with a fluorescence plate reader (Safire
II, Tecan, Zurich, Switzerland) according to manufacturers'
instructions.

2.6. In vitro 3D lymphangiogenesis in radial flow chamber

The radial flow chamber was prepared as described previously
[34]. Fibrin gels were prepared by mixing 3 mg/ml human fibrin-
ogen (Sigma-Aldrich, and fibrinogen solutions were prepared as
described previously [35,36]), 2 U/ml human thrombin (Sigma-
Aldrich), 2.5 mM CaCl2, 2 U/ml human FXIIIa (CSL Behring, King of
Prussia, PS),100 ng/mlwild-type VEGF-C, FB*-VEGF-C or FB-VEGF-C
and 1.5� 106 cells/ml of human LECs. Themixturewas immediately
injected into the center of the radial flow chamber and allowed to
polymerize. Chambers were kept in static conditions for 18 h to
allow for cell attachment and spreading before interstitial flowwas
initiated. Medium was supplemented with 200 kIU/ml aprotinin
(Sigma-Aldrich) and the medium reservoir was changed at every 2
days. 6 days later, cells were fixed with 2% para-formaldehyde for
1 h at room temperature and fixed samples were stained with
phalloidin Alexa Fluor® 488 and DAPI (Invitrogen).

2.7. In vivo release kinetics of VEGF-C from fibrin matrix

Wild-type VEGF-C, FB*-VEGF-C and FB-VEGF-C were conjugated
by -N-hydroxy-succinimide (NHS) with Alexa Fluor® 680 (Invi-
trogen). 50 nmol conjugate was used per 1 nmol of protein and
samples were incubated at room temperature in the dark for 2 h.
Unconjugated dye was then removed using a Zeba Spin desalting
column (7 kDa molecular-weight cut-off, Thermo-Fisher, Waltham,
MA). Protein concentration was determined using a Nanodrop
spectrophotometer (Thermo-Fisher).

For in vivo release kinetics, fibrin gels were first prepared
in vitro. 40 mg/ml of the VEGF-C variants weremixedwith 10mg/ml
fibrinogen, 4 U/ml factor XIIIa, 25 mg/ml aprotinin, 2 U/ml thrombin,
and 5 mM CaCl2. 50 ml gel droplets were first prepared and incu-
bated for 15 min at 37 �C before implantation. For implantation,
two 0.5 cm diameter cuts were made in the skin. The dermis was
detached from the peritoneum with a sterile spatula and a single
gel was placed in the pockets. The skin was then sutured and the
release of VEGF-C, as measured by the decay in fluorescence over
time, was monitored daily using an in vivo optical imaging systems
(IVIS, Perkin Elmer, Waltham MA, USA). The radiance efficiency
units were calculated using Living Image Software 4.0 (Caliper Life
Sciences, Waltham, MA).

2.8. Lymphangiogenesis in subcutaneous cartilage-replacement
healing model

Hydrogel preparation: Fibrin (5 mg/ml) and rat tail collagen I
(2.5 mg/ml) gel mix was prepared using human fibrinogen (Sigma-
Aldrich), 2 U/ml FXIIIa (CSL Behring), 2 U/ml thrombin (Sigma-
Aldrich), 10 mM aprotinin- a2PI1-8 [37], 2 mM CaCl2 and rat tail
collagen I at 7.5 pH (BD Biosciences, San Jose, CA) and 5 mg/ml wild-
type VEGF-C or FB-VEGF-C was used. Procedure: Mice were anes-
thetized using intraperitoneal injection of dormitore (0.05 mg/ml)
and ketamine (12.5 mg/ml) in saline solution. The head and ear of
the mice were shaved and the excess hair was removed by depi-
lation cream. The ear was placed on a glass platform and the two
edges of the ventral side were taped on the glass. The ear dermis
was cut in a square shape by making three scalpel incisions, each
0.5 cm long, on the center of ventral side of the ear (center
measured between edges of the ear and its antihelix) at the ante-
rior, posterior and distal end of the square wound. The dermis flap
was peeled from the cartilage, thus exposing the dorsal dermis to
the air. The resulting skin flap was attached to proximal end of the
ventral ear and used to cover the implanted gel. Thewound and the
bleeding was cleaned using Ringer's buffer. 8 ml of hydrogel was
applied on the opened window. The solution was allowed to gel for
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1e2 min while the ear-flap and air exposed dermis were kept hu-
mid. The ear-flap was gently placed back over the gel and three
edges were fixed to the remaining ventral skin with surgical glue.
21 days later mice were either used for lymphatic drainage and DC
migration assays or euthanized by CO2, fixed, perfused and ear
dermis was used for immunohistochemistry.

2.9. Lymphangiography of full length collecting vessels

21 days after control or FB-VEGF-C treatment, mice were anes-
thetized and 1 ml of anti-podoplanin (10 mg/ml) with FcgR blocking
buffer, were injected intradermally from the dorsal side of the ear. 2
h later, 1 ml of secondary antibody Alexa Fluor® 594 conjugated
(10 mg/ml) with FcgR blocking buffer were injected. Mice were
euthanized by CO2 and perfused with Ringer's buffer (described
previously) and subsequently fixed with 2% paraformaldehyde. Hair
from the back of fixed mouse was removed by depilation cream,
washed well with water and 2 ml of FITC labeled 2000 kDa dextran
(10 mg/ml) was injected in the dorsal side of the ear. By following
the afferent collecting vessels under a fluorescence stereomicro-
scope, the ear pinna, ear canal, afferent lymphatics, auricular
lymph node embedded in fat and neck dermis beneath were
removed from the cadaver. The fat tissue surrounding the lymphatic
vessels and lymph nodes was cleaned gently, and the complete
lymphatic collecting vessels with the lymph node was imaged.
Vessel diameter and valve morphology was measured under fully
automated fluorescence stereo microscope (Leica M205 FA).

2.10. Interstitial flow-dependent lymphatic drainage assay

1% agarose (Ultrapure, Invitrogen) was prepared with distilled
water and melted at high temperature. A series of 2 ml agarose
droplets was applied on a parafilm sheet to solidify for about
10 min at 4 �C. After that, 10 ml of PBS with 5 mg/ml TRITC dextran
(Sigma-Aldrich) was applied on top of each solidified agarose bead
and albumin or dextranwas allowed to equilibrate with agarose gel
overnight at 4 �C in a humid chamber. The next day, free albumin
solution was blotted with paper and beads were washed with PBS,
and stored in a humid chamber at 4 �C. The same day, 21-day old
ear skin flaps were cut along initial incision and lifted to expose the
healed wound within the cartilage. A single albumin or dextran-
loaded bead was placed on the top and at the center of the carti-
lage wound and ear flap was closed back and sealed with surgical
glue. Using the stereomicroscope, the mean fluorescence intensity
was measured at every 2 min for 1 h.

2.11. Intravital imaging of DCs migration and DC-lymphatic
interaction

Intravital immunofluorescence labeling: The experimental pro-
cedure of intravital imaging is described elsewhere [38]. 21 days
after, the control or FB-VEGF-C treated ventral dermis was cut
vertically along antihelix pinna, and ventral dermis together with
the cartilage was gently removed from dorsal skin. The tissue was
cleared from blood clots using Ringer-Lactate buffered with 20 mM
HEPES. Meanwhile, 10 mg/ml LYVE-1 (RELIAtech, San Pablo CA,
USA), 10 mg/ml Collagen IV (Abcam, Cambridge, MA) in FcgR
blocking solutionwas applied on the ear dermis for 15 min. The ear
was washed well with ice-cold Ringer-Lactate buffer and 2 mg/ml
donkey anti-rabbit Alexa Fluor 594 (Invitrogen) with FcgR blocking
buffer was applied on the ear dermis for 15 min. Preparation of
dendritic cells: Bone marrow cells were isolated from tibias and
femurs from 8e12 weeks old eGFP/Balbc mice. Cells were matured
for 7 days in RPMI 1640 supplemented with 10% fetal bovine serum
(Gibco) and 50 mM 2-mercaptoethanol (Sigma-Aldrich) and 20 ng/

ml GM-CSF (R&D Systems), and 15 h before imaging, DCs were
activated with 200 ng/ml LPS (Sigma-Aldrich). The mature DCs
(5�106 cells/ml in 100 ml) were pipetted onto the dorsal dermis and
incubated for 30 min. Unattached cells were gently washed and
drained with a sterile wipe. To prevent photobleaching, ascorbate-
Ringer buffer [38] was constantly delivered (1 ml/min) with a
peristaltic pump systemwhere the needle outlet was placed 0.5 cm
away from the ear. Body temperature was maintained with the
heating pad and feedback rectal thermistor (DC Temperature
Control System FHC Inc, Bowdoin MA, USA). Multiple regions were
imaged for 6e12 h at 250� magnification with a motorized Leica
fluorescent stereomicroscope (Leica M205 FA).

Quantification of DC migration to the lymph node: 8e12 week old
eGFP Balb/c mice were sacrificed by CO2. The spleen and lymph
nodes were digested in a mixture of 2.5 mg/ml collagenase D and
50 U/ml DNase I (Sigma-Aldrich) for 30 min at 37 �C. Cells were
then filtered with a 70 mM cell strainer (Fisher Scientific, Waltham,
MA, USA) and washed with Hank's HBSS buffer supplemented with
0.5% bovine serum albumin and 5 mM EDTA. Cells were counted
and for every 109 cells, 100 ml of CD11c+ magnetic beads (Miltenyi
Biotec, Bergisch Gladbach, Germany) was mixed with the solution
for 15 min at 4 �C. Solution was washed from unbound magnetic
beads and CD11c+ cells were magnetically sorted using a magnetic
column (Miltenyi Biotec). Isolated cells were then centrifuged and
cell-fibrinogen mixtures were made by mixing 1�106 cells with
3 mg/ml fibrinogen, 2 U/ml thrombin, and 1 mg/ml LPS in 5 ml of
volume. 21-day-old ear wounds, initially treatedwith control or FB-
VEGF-C were surgically re-opened along the original wound cuts
and ventral ear skin was lifted exposing healed tissues within the
cartilage layer. For every wound area, 5 ml of cell-fibrinogenmixture
was applied just after adding thrombin. The ear-flap was closed
back and the edges of the wound were sealed with surgical glue.
18 h later, the mouse was sacrificed and the draining lymph node
was harvested and analyzed by flow cytometry.

2.12. Diabetic full thickness skin wound healing

Mice were anesthetized with 3% isofluorane (Minrad Inc., Buf-
falo, NY) using a humidified delivery system, andmaintained under
1.5% isofluorane during the procedure. The backs of 10e14week old
C57BLKS/J-m/Lepr db (db/db) mice were shaved and a 6 mm
diameter biopsy punch (Stiefel, Middlesex, UK) was used to create a
wound on the back of the mouse. 200 ng of VEGF-C, FB*-VEGF-C or
FB2-VEGF-C were mixed with 70 ml of hydrogel mixture (10 mg/ml
human fibrinogen (Sigma), 2 U/ml thrombin (Sigma-Aldrich), 4 u/
ml FXIIIa (CSL Behring), 25 mg/ml aprotinin (Roche Diagnostics),
5 mM CaCl2) and these mixtures were immediately applied on the
wounds. Wounds were covered with an adhesive film dressing
(Hartmann, Heidenheim Germany). After 10 days, the animals were
euthanized with CO2, intracardially perfused and fixed with zinc
fixative (4.5 Mm CaCl2, 38 mM ZnCl2, 38 mM Zn(CF3COO)2, 6 mM
glycine, pH adjusted with NaOH to 6.5) modified after Kilarski et al.
[38]. Wounds were used for histological analysis.

2.13. Histology and immunostaining

Diabetic full thickness wounds: The details of the analysis are
explained elsewhere [39]. Briefly, wounds were excised in 8 mm
diameter to include the margins, and vertically cut into two equal
halves and embedded into the paraffin. Histological analysis was
performed from 8 mm longitudinal wound sections and used for
hematoxylin and eosin, Sirius red (picosirius red) immunofluores-
cence staining. H&E images were taken using a Slide Scanner
VS120-L100 (Olympus, Volketswil, Switzerland).

Cartilage-replacement wound healing: Samples were incubated
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in zinc fixative for at least 24 h at 4 �C. Ears were thenwashed with
1� TBS buffer at pH 7.5 and tissues were either embedded in
paraffin and sectioned or the dorsal skin was peeled off from
ventral dermis and whole mount stained. Primary antibodies: anti-
Lyve-1 (RELIAtech), anti-podoplanin, anti-tenascin-C, anti-CCL21-
biotin (R&D Systems) anti-collagen IV-biotin (Abcam, Cambridge,
UK), anti-von Willebrand (Abcam), rabbit anti-aSMA (Abcam).
Secondary antibodies; anti-rabbit Alexa Fluor®488, donkey anti-
goat Alexa Fluor® 594 and streptavidin Alexa Fluor® 647 (Invi-
trogen), anti-rabbit Dy light®488 (Abcam) and 0.5% Casein in TBS
was used for blocking buffer and staining for primary and sec-
ondary antibodies.

2.14. Flow cytometry

Only the wounded side of the ear dermis was used for the
analysis. The dorsal and ventral ear skin layers were split into two
separated tissues and digested in 10 mg/ml Collagenase IV and 50
U/ml DNAase for 45 min at 37 �C. Lymph nodes were digested in
1 mg/ml collagenase IV and 50 U/ml DNase followed by 3.3 mg/ml
collagenase D [40]. Digested tissuewas filtered through a 70 mMcell
strainer and collected cells were stained for flow cytometry using
fluorescently conjugated anti-CD45-biotin, anti-Podoplanin, anti-
CD31, anti-CD3, anti-Ly6C, anti-CD11b, anti-CD11c, anti F4/80
(eBiosicence San Diego, CA), anti-Ly6G, anti-MHC II (Biolegend, San
Diego, CA, USA), primary rabbit anti-Lyve-1 (RELIAtech, San Pablo
CA, USA) and streptavidin Pacific Orange conjugate™, donkey anti
rabbit Alexa Fluor® 647 (Invitrogen).

2.15. Image quantification

In vitro lymphangiogenesis: Images of the matrix and endothelial
cells were collected using a laser scanning confocal microscope
(Zeiss LSM 510, Heidelberg, Germany). The matrix was visualized
using confocal reflectance, utilizing the reflective qualities of the
collagen fibers under 633 nm laser illumination. Two sets of 25x 3-
D image stacks that scanned a depth of 100 mm and a length of
1.46 mm were collected in each chamber. The number of multi-
cellular organizations (minimum 3 nuclei) was counted. The vol-
ume, and the percentage of total cells in structure was calculated
from 3D projections images using Imaris 7.1 (Bitplane, Zurich,
Switzerland) algorithm. In vivo lymphangiogenesis: Sections were
imaged using Leica SP5 white light laser confocal microscopy. 3D
image stacks were analyzed using the algorithm from Imaris 7.1 Bit
Plane software. Lyve-1 and Podoplanin threshold signals was
adjusted and total area of positive pixels was normalized to total
wound area. Tile images of diabetic wound sections were imaged
using Zeiss Axioplan for image quantification, and Leica SP5 white
light laser confocal microscopy was used to take representative
images. An algorithm was created in Fiji software to select wound
area in tile images and to omit artifact and autofluorescent staining.
The number and area of each vessel was calculated together with
the total Lyve-1 positive area per wound area. Quantification of
CCL21 staining: Confocal images were taken using Zeiss LSM 710
confocal microscope. Images were taken from lymphangiogenic
regions of the diabetic wound. 3D stack images were analyzed
using Fiji software. The average mean intensity of each image was
measured after signal thresholding. Diabetic wound healing: Re-
epithelization and the thickness of the granulation tissue were
measured on hematoxylin and eosin stained sections using Fiji.
Images were converted to binary and the threshold set to count
positive pixels in the granulation tissue. The distance between the
panniculus carnosus under hypodermis was measured to estimate
the initial wound diameter and the percentage of wound closure
was calculated by measuring the diameter where re-epithelization

was not yet formed. Complete re-epithelization was assumed as
complete wound closure. The granulation tissue area between
original woundmargin (between panniculus carnosus, hypodermis
and dermis) was measured.

2.16. Statistics

One-way ANOVA was used for multiple comparisons with
Tukey's post-priori test. Unpaired Student's t-test was used to
compare independent groups and paired Student's t-test was used
when two different conditions were tested on the same animal.
Differences were considered significant when p < 0.05. Samples
were tested for normal distribution and groups for equal variance
before running statistical test using Prism 5 (GraphPad, La Jolla, CA)
Error bars show standard deviation. Each individual experiment
was repeated at least two times. Samples were not excluded spe-
cifically from analysis and no randomization or blinding protocol
was used. Sample size was sufficient to determine large statistical
differences and compare the variance similarity between tested
groups. Data meets the assumptions of the tests. Statistical test was
not used to predetermine the sample size.

3. Results

3.1. FB-VEGF-C is stable in fibrin and released upon fibrin
degradation

The design and expression of fibrin-binding protein variants has
been described previously [32]. The transglutaminase substrate
sequence a2-PI1-8 links VEGF-C to fibrin during the thrombin/
FXIIIa-mediated polymerization of soluble fibrinogen, which is
cleaved during the proteolytic degradation of fibrin via plasmin.We
constructed FB*-VEGF-C (i.e., a2-PI1-8 -VEGF-C) and further fused an
interpositional MMP substrate peptide [41] to engineer FB-VEGF-C
(i.e., a2-PI1-8-MMP-VEGF-C) to provide dual enzymatic sensitivity
for the proteolytic release of VEGF-C [41] (Fig. 1A). The a2-PI1-8 or
a2-PI1-8 eMMP substrate domain is fused to the N-terminal side of
VEGF-C (Supplementary Fig. 1) and increases the molecular weight
of monomers of mature VEGF-C, as shown by SDS-PAGE gels
stained with Simply Blue SafeStain (Fig. 1B).

To test the bioactivity of the engineered proteins, LECs were
stimulated with VEGF-C variants for 5, 10 and 15 min. Surprisingly,
both FB*-VEGF-C and FB-VEGF-C variants induced stronger and
time-dependent VEGFR-3 phosphorylation compared to commer-
cially available wild-type VEGF-C (Fig. 1C). Notably, the same con-
centrations of wild-type and fibrin-binding forms of VEGF-Cs
similarly increased the proliferation of LECs after 24 h of incubation
(Fig. 1D).

To assess the functionality of the a2-PI1-8 domain in immobi-
lizing VEGF-C to fibrin and the requirement of proteolysis for its
release, we prepared fibrin gels with FB-VEGF-C and measured the
release of VEGF-C over 3 days under protease-free conditions. After
an initial 20% release of unbound FB-VEGF-C, the remaining FB-
VEGF-C was not released in the plasmin-free conditions; in
contrast, more than 80% of wild-type VEGF-C was released within 3
days. We demonstrated a plasmin-mediated release over several
days, with a linear release of VEGF-C with simulatenous fibrin
degradation (Supplementary Fig. 2). We also showed that FB-VEGF-
C binds to fibrin spontaneously deposited in the injured tissues
(without using a hydrogel implant, Supplementary Fig. 3).

To visualize the release of VEGF-C in vivo, we used fibrin gels
with fluorescently labeled VEGF-C variants, which was implanted
in the skin of both sides of the back of BALB/c mice. The cumulative
infrared fluorescence showed that more than half of the wild-type
VEGF-C was released within 3 days and none could be detected at 8
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days (Fig. 1E and F). FB*-VEGF-C and FB-VEGF-C release started 6
days later than that of wild-type VEGF-C, and the process was
completed in 12 days. No difference was detected between the
release of FB*-VEGF-C and FB-VEGF-C. Thus, the incorporation of a
fibrin-binding sequence within VEGF-C resulted in sustained
binding and prolonged release from a fibrin-based biodegradable
matrix.

3.2. FB-VEGF-C variants induce in vitro lymphatic capillary
formation with interstitial flow synergistically

Because the VEGF-C engineering strategy could diminish the
need for the repeated administration of VEGF-C, we investigated if a

single dose of VEGF-C embedded in fibrin could promote lym-
phangiogenesis in vitro. We incorporated wild-type VEGF-C, FB*-
VEGF-C or FB-VEGF-C in a fibrin gel and allowed LECs to grow for
6 days in a radial flow chamber. Slow interstitial flow has been
shown to guide capillary and lumen formation by promoting the
endothelial cell sensing of growth factor gradients in the sur-
rounding environment [42]. Indeed, applying flow within 3D gels
drastically modulated the effect of both FB*-VEGF-C and FB-VEGF-C
on lymphatic capillary formation compared to the wild-type form of
VEGF-C (Fig. 2A). We did not find any difference between FB*-VEGF-
C and FB-VEGF-C, as both types similarly increased the ratio of cell
volume in the gel and the number of cells in the structures (>3 cells)
(Fig. 2BeC, Supplementary Fig. 4). Lymphatic capillaries formed

Fig. 1. Bioactivity and extended delivery of fibrin-binding VEGF-C variant. A, The mature form of VEGF-C was fused with the peptide a2-PI1-8, a substrate for FXIIIa during the
formation of insoluble fibrin clots. VEGF-C release was enabled by plasmin cleavage of fibrin or MMP cleavage of the additional MMP substrate peptide fused between the a2-PI1-8
domain and VEGF-C. B, SDS-PAGE gels of wild-type VEGF-C (1); FB*-VEGF-C (lacking the MMP cleavage domain) (2); and FB-VEGF-C (containing it) (3) under non-reducing and
reducing conditions. C, VEGFR-3 phosphorylation (pVEGFR-3) as measured by enzyme-linked immunosorbent assay (ELISA) after stimulating lymphatic endothelial cells (LECs) with
100 ng/ml free or fibrin-binding forms of VEGF-C for 5, 10 and 15 min (n � 3). D, LEC proliferation by Alamar Blue assay after 24 h treatment with 100 ng/ml free or fibrin-bound
forms of VEGF-C, relative to untreated control group (n ¼ 7). E, In vivo maintenance of FB-VEGF-C variants implanted in fibrin over 10 days. 1 mg fluorescent dye was conjugated to
wild-type VEGF-C, FB*-VEGF-C or FB-VEGF-C and implanted subcutaneously in fibrin, and measured by infrared spectrometry. Representative images show the radiant efficiency
([p/s/cm2/sr]/[mW/cm2]) of the fluorescent VEGF-C in the gels. F, Cumulative release VEGF-C from in vivo imaging data (n � 3, mean ± SD) *p < 0.05, **p < 0.01, ***p < 0.001. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Fibrin-binding VEGF-C variants act synergistically with interstitial flow to drive lymphatic capillary morphogenesis in vitro. A, Representative confocal images show
capillary formation of lymphatic endothelial cells (LECs) after 6 days of 3D culture in fibrin with 100 ng/ml wild-type VEGF-C, FB*-VEGF-C or FB-VEGF-C, under static or flow (1 mm/
s) conditions (Scale bar: 100 mm). Quantification of capillary formation is shown by (B) percent volume of LECs in the 3D matrix and (C) numbers of cells forming structures
(incorporation of �3 nuclei) counted from 25� z-stack images (n ¼ 3, mean ± SD). D, Confocal z-stack and single-plane confocal reflectance images of extracellular matrix fibers
show lumen (arrows) within newly formed lymphatic capillaries. (green: F-actin, blue: DAPI, grey: fibrin; scale bar:50 mm) *p < 0.05, **p < 0.01, ***p < 0.001.
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lumens, as shown in a single-plane confocal microscopy image
(Fig. 2D, Supplementary Fig. 5). Lumen formation was previously
shown to be an indicator for biophysically stable and functional
endothelial cell structures that are able to transfer fluid [43]. Because
the release rates of FB*-VEGF-C and FB-VEGF-C were similar, we
concluded that the release was governed by the same plasmin-
dependent release mechanism. Because these two proteins also
displayed similar bioactivity, we decided to use only FB-VEGF-C to
further test the effect of matrix-immobilized VEGF-C on in vivo
lymphangiogenesis.

3.3. FB-VEGF-C induces remodeling in lymphatic capillaries but not
in downstream collecting vessels

Next, we tested the local effect of FB-VEGF-C in a subcutaneous

cartilage-replacement healing model in vivo (Fig. 3A). Histological
sections of day 0 wounds showed fibrin gel filling the gap after the
cartilage excision (Fig. 3B). Before comparing the effect of wild-type
and FB-VEGF-C, we determined the optimum dose (40 ng) and time
(21 days) to induce extensive lymphangiogenesis (Fig. 3C). Cross
sections of the control and the wild-type VEGF-C- and FB-VEGF-C-
treated ears confirmed that by 21 days after wounding, extensive
lymphangiogenesis was induced in FB-VEGF-C-treatedwounds, but
not in control gel or wild-type VEGF-C-treated wounds (Fig. 3DeF).
We showed that FB-VEGF-C had no effect on morphology of
growing blood vessels as characteristic hyperplastic abnormalities
like micro aneurysms or tortuosity [44,45] were not detected.
Despite invasive presence of hyperplastic lymphatics, newly
formed blood vessels had uniform diameter and basement mem-
brane support similar to blood vessels in control wounds

Fig. 3. Fibrin-binding VEGF-C implanted in the ear promotes lymphatic capillary hyperplasia. A, Illustration of the surgical procedure of the ear. After the surgical cut is made,
the cartilage is removed, and the hydrogel is implanted into the central part. The ear-flap is then closed, and the skin edges are sealed with surgical glue. B, Hematoxylin and eosin
staining of untreated and gel-implanted ear sections. In (A) and (B), the dotted line shows the gel-implanted area and the borders where the cartilage was removed. C, Confocal
images show the lymphatic vessels labeled with Lyve-1 (green) by whole mount immunostaining of the dorsal ear skin. Control, 8 ng and 40 ng FB-VEGF-C in a hydrogel applied to
the wound. Representative images show the whole mount staining 3, 7 and 21 days after wound healing (Scale bar: 100 mm). D, Immunostaining of the ear tissue 21 days after the
application of the control, wild-type VEGF-C or FB-VEGF-C gel. Paraffin-embedded tissues sectioned at 5 mm thickness and stained with podoplanin (red) and Lyve-1 (green) (Scale
bar:100 mm). Dashed borders show the ear epithelium. E, Lyve-1-positive and (F) Lyve-1 podoplanin-positive percentage areas were calculated for each ear wound area (n � 4,
*p < 0.05, **p < 0.01, ***p < 0.001).
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(Supplementary Fig. 6).
Whole-mount immunostaining of the subcutaneous wounds

and untreated skin showed that extensive lymphangiogenesis
induced pillar formation and intussusception, forming large
diameter vessels compared to control gel wounds. This result is
consistent with features described for vascular hyperplasia [46]
(Fig. 4A). Healed wounds were also analyzed by flow cytometry.
We confirmed that the LEC population increased after FB-VEGF-C
treatment (Fig. 4BeC), while the treatment did not affect blood
endothelial cells (BECs) (Fig. 4D) or other CD45� cells
(Supplementary Fig. 7). In addition, the expected increases in
leukocyte, neutrophil and macrophage infiltration were not

affected by FB-VEGF-C (Fig. 4EeF), as well as activated DCs (Fig. 4G,
Supplementary Fig. 8). These results showed that FB-VEGF-C had a
local effect only on LECs at 21 days after its administration.

Next, we tested whether locally administered FB-VEGF-C affects
the morphology of downstream collecting vessels. We used post-
mortem, fixed, intact tissue to visualize the morphology of col-
lecting vessels between antihelix pinna to auricular lymph node.
Fluorescence lymphangiography revealed that the downstream
collecting vessels did not show obvious evidence of remodeling
with regards to lymphatic sprouts and morphological abnormal-
ities at the valve locations (Fig. 4HeJ). These results showed that
FB-VEGF-C induced only local effects on lymphatics and 21 days

Fig. 4. Lymphangiogenic gels induce local lymphatic hyperplasia but do not remodel downstream collecting vessels. A, Whole mount confocal images of untreated dorsal ear
dermis and 21 days after treatment with the fibrin gel control (CTR) or FB-VEGF-C. Images show podoplanin (red) and collagen IV (green) staining. Stars indicate pillar formation on
the FB-VEGF-C-treated condition (Scale bar: 50 mm). B, Representative flow cytometry plot showing the gating strategy of LECs; podoplaninþCD31þ, BEC; CD31þpodoplanin�, and
other CD45� cells in the skin. The ratio of LECs (C) and (D) BECs among total CD45� cells. (E) Representative flow cytometry graphs of CD45þ cells in healthy, control and FB-VEGF-C-
treated wounds after 21 days. (F) The ratio of CD45þ cells in the gel implanted area. (G) Pie chart showing neutrophils (Ly6GþCD11bþ), macrophages (F4/80þCD11bþ), DCs
(MHCIIþCD11cþ), and other CD45þ cells in untreated, control or FB-VEGF-C-treated conditions (n � 5). (H) Zoomed out image of the fixed ear after the injection of FITC-dextran. *ear
anti-helix pinna, **auricular lymph node, and the arrow shows afferent lymphatic vessels. (Tile image scale bar: 800 mm, zoomed in picture: 200 mm) (I) Average vessel diameter
measured by taking the average of 10e15 measurements between the antihelix pinna to the draining lymph node. Images were taken under stereomicroscopy. (J) Intravital labeling
of collecting lymphatic vessels draining the lymphangiogenic site (dextran, green) with valves shown (podoplanin, red). Scale bar: 75 mm; n ¼ 4, *p < 0.05, **p < 0.01, ***p < 0.001.

E. Güç et al. / Biomaterials 131 (2017) 160e175168



after its administration, no alteration in the local immune infiltra-
tion was detected.

3.4. Fluid clearance is unaltered by local lymphangiogenesis

We investigated the fluid and solute transport capability of
lymphangiogenic vessels with a new clearance assay. We designed
this method to avoid the effects of injection pressure on lymphatic
clearance (Supplementary Fig. 9), which is typically encountered in
clearance assays. Instead, the clearance of fluorescence dextran
implanted on the exposed dermis relied on diffusive and convective
forces driven entirely by the dynamics of tissue blood and
lymphatic circulations. To demonstrate that lymphatic abnormal-
ities in collecting vessels can be detected by the implantation
technique, we tested a control case where lymphatic collecting
vessels were blocked by anti-lymphatic photodynamic therapy, a
technique that specifically occludes lymphatic collecting vessels
but not lymphatic capillary or blood vessels [47]. Indeed, we found
lymphatic occlusion resulted in complete inhibition of dextran
clearance from the skin (Supplementary Fig. 10). Next we tested the
drainage of microbeads implanted under the ventral skin-flap that
had been treated with control or FB-VEGF-C hydrogels (Fig. 5AeC).
Interestingly, no differences in clearance rates were observed be-
tween the control, control wound, or hyperplastic lymphatics
(Fig. 5D).

3.5. DC emigration is enhanced in lymphangiogenic regions

The effect of FB-VEGF-C-induced lymphangiogenesis on DC
migration was visualized by intravital immunofluorescence imag-
ing, a technique that has been previously used in our laboratory to
visualize leukocyte vessel transmigration [38,48]. First, we verified
that DCs, isolated from eGFP BALB/c mice, were attracted to both
control and hyperplastic lymphatics of the wound and migrated

towards lymphatic vessels for 7 h. This indicated that both vessel
types could support major transmigratory immune functions for
normal lymphatic vessels (Fig. 6A and Supplementary Videos 1 and
2). Next, we investigated DC trafficking to the lymph node, avoiding
potential unwanted effects of direct injection (e.g., into lymphatic
vessels or increased local interstitial pressure) by implanting the
DCs directly onto control or FB-VEGF-C-treated wounds. We found
substantially increased DC homing to the draining lymph node
from lymphatic hyperplastic regions than from control wounds
(Fig. 6BeC). In contrast to the DCs that remained in the ear, the DCs
that migrated to the lymph node showed a mature phenotype
(CD86þMHCIIþ) (Fig. 6D).

Supplementary data related to this article can be found online at
http://dx.doi.org/10.1016/j.biomaterials.2017.03.033.

3.6. FB-VEGF-C promotes diabetic wound healing

In healthy wounds, FB-VEGF-C induced extensive lymphangio-
genesis and increased immune cell trafficking. To determine the
therapeutic effect of FB-VEGF-C, we used a mouse model of type II
diabetesmellitus (db/dbmice), where poor vascularization is one of
the reasons for impaired tissue healing, as a model of chronic
wounds [49]. Fibrin hydrogels containing control, VEGF-C, or FB-
VEGF-C were implanted on back skin wounds according to our
previously published protocol [39]. As a positive healing response
parameter, wemeasured the thickness of the GT that formedwithin
the wound and wound re-epithelialization (Supplementary Fig. 11).
Notably, this is an approximately 500-fold lower dose than what
has been used in previous studies [21,50]. GT thickness reflects
wound vascularization and also the degree towhich transient fibrin
is replaced with fibrous, contractile tissue populated with macro-
phages and myofibroblasts, cells critical for the deposition of new
matrix components and subsequent wound closure [6]. We found
that FB-VEGF-C increased GT thickness compared to the wild-type

Fig. 5. Lymphatic clearance is unaltered by lymphangiogenic hyperplasia. A, Drainage assay: fluorescent dextran-loaded agarose beads were placed atop the lymphangiogenic
region, and the ear skin flap was gently closed and sealed. B, Drainage was measured by tracking the fluorescence decay of 5 mg/ml 155 kDa TRITC dextran in 2 ml of 1% agarose
beads every 2 min using a stereomicroscope (Scale bar: 1 mm). C, Representative graph of dextran intensity decay over time. Red line shows the time frame when the clearance rate
was linear and the slope of the intensity was measured. D, The clearance rate (1/min) was calculated using the slope of the intensity over time (n ¼ 7). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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VEGF-C and control groups, although wound re-epithelialization
was not different (Fig. 7AeC). Lyve-1 and podoplanin-stained
cross-sections of wounds showed that FB-VEGF-C also induced
lymphatic hyperplasia in GT compared to the control and wild-type
VEGF-C (Fig. 7D). The number of Lyve-1þ vessels was remarkably
increased by FB-VEGF-C, with more vessels per wound and more
large-area (more than 1200 mm2) vessels compared to that of wild-
type VEGF-C and control groups (Fig. 7EeG). In addition, the
deposition of collagen type I, collagen type III and tenascin-C at the
border of large lymphatic vessels (Supplementary Fig. 12) might be
associated with thick GT in FB-VEGF-C-treated wounds.

3.7. FB-VEGF-C enhances CCL21 and leukocyte trafficking in
diabetic wounds

Lymphatics secrete chemokines that attract migratory leuko-
cytes, DCs and neutrophils to the lymphatic vessel lumen [51,52].
We found that the total number of CD45þ cells was not different in
hyperplastic vessels compared to control vessels, but rather that
more leukocytes were located within the lymphatic lumen of hy-
perplastic vessels and were frequently attached to the basolateral
wall (Fig. 8AeD). The increased numbers of transmigrating leuko-
cytes could be attributed to increased secretion of CCL21, a leuko-
cyte chemoattractant, by VEGF-C-stimulated lymphatic endothelial
cells [53]. In fact, we found that CCL21 expression by LECs was
increased in regions of extensive lymphangiogenesis (Fig. 8EeF).

4. Discussion

Here, we developed a clinically suitable FB-VEGF-C delivery
method via proteolytic plasmin or MMP cleavage and showed that
increased lymphangiogenesis was restricted to the local initial
lymphatic capillary bed. Using a system previously established in
our lab [29,37,54], fibrin-binding forms of engineered VEGF-C are

slowly released in situ from a provisional matrix, becoming acces-
sible only to infiltrating cells [55,56]. A loss of bioactivity is a major
obstacle when engineering functional proteins; however, we
showed that the receptor-stimulating potential of modified VEGF-
Cs was not affected. While low doses of wild-type VEGF-C had no
biological effect in vivo, the administration of FB-VEGF-C induced
lymphatic overgrowth within the initial lymphatic compartment,
while the collecting vessels remained morphologically unaffected
along its entire route to the draining lymph node.

In our study, engineered FB-VEGF-C was released as a function
of fibrin degradation and remodeling over a course of 10e12 days,
which is similar to the duration of the initiation of physiological
lymphangiogenesis inwound healing [57], and this enables specific
targeting of lymphatics without causing the remodeling of down-
stream vessels. Nevertheless, a physiological assay should test the
functionality of the entire lymphatic network, independent of the
correct morphology of the collecting vessels.

Fluorescence lymphangiography measures lymphatic clearance
with a pressurized interstitial fluid injection, which, over short
distances, might overestimate the maximum capacity of the
lymphatic system. This is due to the abnormally high hydrostatic
force generated within the tissue that is manifested by transient
skin expansion (local mechanical edema) following intradermal
injection. In addition, the high pressure at the needle outlet would
alter the lymphatic clearance rate by influencing the transmural
flow-dependent stroke volume per lymphangion [58]. Essentially,
in small animals, such as mice, lymphangiography can be used to
define the routes taken by functional lymphatic collecting vessels,
but not to determine the drainage kinetics. The only method
designed to quantify lymphatic drainage across the physiological
pressure range in mice is the measure of lymphatic conductance
specifically in tail lymphatics [59]. However, wounding of the tail
skin also disrupts the collecting lymphatics [60] therefore, this
approach does not represent regular skin healing. These

Fig. 6. Engineered lymphangiogenesis enhances the local migration of activated DCs. A, Intravital microscopy imaging of dermal lymphatics (LYVE-1þ, red) and mature dendritic
cells (DCs, eGFPþ, green) that had been placed on the wound. Arrows show DCs entering the newly formed lymphatic capillaries (Scale bar: 50 mm). B, Representative flow
cytometry graph showing migrated DCs in the lymph node. C, Quantification of the total numbers of migrated DCs in lymph nodes draining the control vs. FB-VEGF-C-fibrin regions.
D, The percent of activated DCs (CD11cþMHCIIþCD86þ) among live GFPþCD11cþ cells in the lymph node and ear (n ¼ 11, *p < 0.05).
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methodological limitations led us to develop an assay that aimed to
detect any decline in lymphatic drainage capacity below the
physiological influx level of the tissue interstitial fluid. To avoid
pressurized fluid injection, fluorescent dextran loaded in agarose
beads was implanted over the healed vasculature and subsequently
delivered to the interstitium by interstitial fluid flow-dependent
convection. A similar experiment on the ear with lymphatic col-
lectors blocked by photo ablation showed that fluorescence
evanescence was almost entirely dependent on the active
lymphatic drainage. Because we compared the fluid drainage at
physiological, rather than injection-enforced or edema-driven
pressures, the lymphatic system could not be artificially over-
loaded and drained at its physiological pace. Any bottleneck
capable of interfering with lymphatic flow should result in a
delayed clearance of fluorescence. Using this method, we found no
difference in the drainage between normal wound lymphatics and
hyperplastic initial vessels from FB-VEGF-C stimulated wounds,
substantiating that one of the most critical physiological functions
of lymphatics was not disturbed by hyperplastic-like extensive
lymphangiogenesis in the initial compartments of lymphatics.

Initial lymphatics, which form the entry routes for DCs, have an
incomplete, thin basement membrane, and button-like junctions
between endothelial cells are part of the primary valves that
facilitate an influx of fluid [61,62]. Large, blunt-ended initial lym-
phatics are also morphologically quite different from collecting
vessels, which are additionally supported by a full-thickness
basement membrane and smooth muscle cells. This is in contrast
to inflammation-induced, hyperplastic or lymphangiogenic capil-
laries, where button-like junctions (permeable) are replaced with
continued zipper-like junctions (non-permeable) that are nor-
mally formed between the endothelium of collecting vessels
[63,64]. Because button-to-zipper junction transformations during
inflammation are VEGF-C-independent, we expected that the
newly formed initial lymphatics would be capable of supporting
leukocyte transmigration. Indeed, our intravital imaging designed
to image lymphatic-DC interactions indicated that the morpho-
logical differences between normal wound and wound hyper-
plastic lymphatics had no effect on the basic function of initial
lymphatics, allowing cells to squeeze between vessel walls and
enter the new lymphatics of control wounds and hyperplastic
vessels.

FB-VEGF-C-stimulated lymphatic capillaries displayed
expanded lumens and larger vessel diameters, implying that more
lymphatic surface area was available to the DCs to transmigrate in
addition to the increased chemoattractant CCL21. Importantly,
implanting DCs onto the remodeled tissue, rather than injecting
them subcutaneously, guaranteed that the cells could use physio-
logically defined routes for tissue egress. Thus, we conclude that
lymphatic hyperplasia leads to increased attraction and trans-
migration of immune cells but does not necessarily alter fluid or
solute clearance per se.

In diabetic wounds, poor blood circulation results in the inad-
equate presence of growth factors in the healing environment,
which eventually leads to diminished blood and lymphatic re-
vascularization and is associated with increased edema and
impaired wound healing [65]. FB-VEGF-C caused extensive lym-
phangiogenesis, which correlated with the formation of thicker GT
in diabetic wounds. In a subcutaneous cartilage-replacement
healing model, FB-VEGF-C increased only the number of
lymphatic endothelial cells of initial lymphatics in the GT and had
no effect on the density and morphology of blood vessels and
macrophages as compared to the control wound. This mechanism is
different from the VEGF-C effect reported by Saaristo et al. [20],
where genetic overexpression of VEGF-C led to the equal stimula-
tion of lymphatic and blood vessel growth and also attracted more

macrophages that also expressed VEGFR-3. These authors
concluded that stimulated blood angiogenesis and positive feed-
back from immigrated macrophages were the main factors leading
to enhanced GT formation. In our model, however, FB-VEGF-C was
administered at a low dose, and the bioavailability of the active
growth factor was further restricted by a slow-release mechanism
of VEGF-C from the matrix; this can explain its exclusive stimula-
tion of lymphangiogenesis without blood vessel angiogenesis, as
VEGF-C acts primary on lymphatic VEGFR-3. Regardless of the
mechanism, only initial lymphatics responded to FB-VEGF-C stim-
ulation; hence, they were likely responsible for the enhanced
granulation tissue formation in diabetic wounds.

Impaired wound healing in diabetes is also associated with the
persistence of pro-inflammatory leukocytes in wounds because of
a high level of chemokine secretion [66] and possibly poor
lymphatic vascularization that interferes with leukocyte evacua-
tion. We found that the overall number of CD45þ cells in diabetic
wounds with induced extensive lymphangiogenesis did not
change; however, more leukocytes were associated with the hy-
perplastic lymphatic vessels compared to normal vessels. In the
skin, mature DCs and Langerhans cells express the CCL21 receptor
CCR7, and are therefore chemoattracted to CCL21-secreting
lymphatic vessels [1,67], which again is upregulated by VEGF-C
[53]. Consistently, we found that hyperplastic lymphatic capil-
laries of diabetic wounds produced more CCL21 overall, which
could explain the elevated leukocyte trafficking to the lymphatics,
since equal numbers of leukocytes were found in FB-VEGF-C-
fibrin-treated diabetic wounds compared to control wounds. This
could suggest that increased CCL21 together with increased
lymphatic surface area may be associated with the accelerated
transmigration of leukocytes to lymph nodes. However, in addition
to CCL21, the expression of other factors such as CCL2, CCL5, CCL20
as well as leukocyte adhesion receptors may affect this process
[68].

Hyperplastic growth, or the enlargement of pre-existing ves-
sels, has been previously induced with administration of direct
and high doses of VEGF-C or in VEGF-C-overexpressing systems
[55,56,69]. In collecting vessels, VEGF-C-induced hyperplasia
cause malformations of collecting valves [19] [26,69] or vessel
hyperpermeability [19,70] that are the primary causes of major
pathologies of collecting vessels, slow or multi-directional
drainage pattern and lymphatic blockage of DC trafficking. And
even though these hyperplastic lymphatic vessels can normalize
and gradually acquire hallmarks of mature collecting vessels [19]
this process is slow and in certain conditions lymphatic hyper-
plastic vessels persist indefinitely [71], leading to lymphedema
[72] In contrast, a low and single dose of fibrin-binding VEGF-C,
induced local, functional lymphangiogenesis, which promoted
immune cell emigration to the lymph node, in turn improving
wound healing. FB-VEGF-C was released from fibrin by action of
proteases produced by gel infiltrating cells and its gradual dosing
had no effect on blood vessels or macrophages. Instead, FB-VEGF-
C induced LEC proliferation only in capillaries but not collecting
vessels that increased immune cell trafficking without affecting
macromolecule drainage. This finding indicates that in contrast to
lymphatic collectors, hyperplasia within initial compartment is
beneficial for lymphatic functionality. This might be due to vastly
distinct biomechanical functions of these two compartments as
fluid drainage, leukocyte attraction and subsequent intravasation
that occur at the level of cell or cell junctions, are independent
and thus tolerant to morphological changes of the whole struc-
ture of initial lymphatic vessels. Lymphatic collectors however,
cannot endorse similar plasticity as efficient unidirectional lymph
transportation demands higher order co-operation in formation
of multicellular valves. These results highlight the importance of
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delivery method for therapeutic efficacy of VEGF-C, similar to that
shown for VEGF-A [39], and introduce both a means of inducing
local lymphangiogenesis as well as a potential therapeutic
application.
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Fig. 8. Lymphangiogenic gels in diabetic wounds promote leukocyte interactions with lymphatic vessels through increased CCL21 expression. A, Paraffin-sectioned diabetic
skin wounds were stained for CD45 (red), Lyve-1 (green) and DAPI (blue). The arrow shows CD45þ cells staining for Lyve-1þ in the lymphatic lumen (Scale bar: 30 mm). B, 3D
construction of FB-VEGF-C-treated wound images shows CD45þ cells located in the lymphatic lumen. The arrows indicate leukocytes found at the apical site of lymphatic vessels,
suggesting that those cells completed the transmigration process (scale bar, 20 mm). C, The total amount of CD45þ cells per mm2 of granulation tissue in the wound was calculated
using fluorescent confocal images. D, Quantification of total CD45þ cells detected in Lyve-1þ lymphatic lumen per mm2 wound tissue (n � 5,*p < 0.05). E, Confocal images of wound
sections labeled with Lyve-1 (green) and CCL21 (red). The arrows show perinuclear CCL21 deposited in Lyve-1þ vessels (Scale bar: 10 mm). F, Average intensity of CCL21 per mm2

granulation wound tissue (n � 4, **p < 0.01).

Fig. 7. Lymphangiogenic gels accelerate wound healing in diabetic mice. A, Full-thickness back skin wounds were created on db/db mice, and the wounds were treated with
fibrin gels (control or with 200 ng VEGF-C or FB-VEGF-C) for 10 days. Wound sections were stained for H&E, and representative images show the GT thickness of each group. A black
arrow shows the initial wound edges, while a red arrow shows the tip of re-epithelization (Scale bar: 500mm). (B) GT thickness and (C) percent wound re-epithelization were
analyzed using H&E-stained tissue sections. D, Lymphatic vessel density was assessed by immunofluorescence staining (DAPI: blue, Lyve-1: green, podoplanin: red, magnification
40�, scale bar: 80 mm) and quantified by measuring (E) the percent area of Lyve-1þ pixel area per mm2 of granulation tissue. F, The percentage of vessels larger than 1200 mm2 in GT.
Lyve-1þ area per vessel was calculated per sample. Samples with a Lyve-1þ area <40 mm2 and samples that had less than 6 vessels were removed from the analysis. Lyve-1þ pixels
forming a lumen counted as a vessel, and the size distribution was normalized to the total number of vessels for each condition (n � 7, mean ± SD, *p < 0.05, **p < 0.01, ***p < 0.001).
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