38 research outputs found

    Traveling slippery patches produce thickness-scale folds in ice sheets

    Get PDF
    Large, complex stratigraphic folds that rise as high as 60% of the local ice thickness have been observed in ice sheets on Antarctica and Greenland. Here we show that ice deformation caused by heterogeneous and time-variable basal sliding can produce the observed structures. We do this using a thermomechanical ice sheet model in which sliding occurs when the base approaches the melting point and slippery patches develop. These slippery patches emerge and travel downstream because of a feedback between ice deformation, vertical flow, and temperature. Our model produces the largest overturned structures, comparable to observations, when the patches move at about the ice column velocity. We conclude that the history of basal slip conditions is recorded in the ice sheet strata. These basal conditions appear to be dynamic and heterogeneous even in the slow-flowing interior regions of large ice sheets

    North Atlantic Eddy-Driven Jet in Interglacial and Glacial Winter Climates

    Get PDF
    The atmospheric westerly flow in the North Atlantic (NA) sector is dominated by atmospheric waves or eddies generating via momentum flux convergence, the so-called eddy-driven jet. The position of this jet is variable and shows for the present-day winter climate three preferred latitudinal states: a northern, central, and southernposition in the NA. Here, the authors analyze the behavior of the eddy-driven jet under different glacial and interglacial boundary conditions using atmosphere–land-only simulations with the CCSM4 climate model. As state-of-the-art climate models tend to underestimate the trimodality of the jet latitude, the authors apply a bias correction and successfully extract the trimodal behavior of the jet within CCSM4. The analysis shows that during interglacial times (i.e., the early Holocene and the Eemian) the preferred jet positions are rather stable and the observed multimodality is the typical interglacial character of the jet. During glacial times, the jet is strongly enhanced, its position is shifted southward, and the trimodal behavior vanishes. This is mainly due to the presence of the Laurentide ice sheet (LIS). The LIS enhances stationary waves downstream, thereby accelerating and displacing the NA eddy-driven jet by anomalous stationary momentum flux convergence. Additionally, changes in the transient eddy activity caused by topography changes as well as other glacial boundary conditions lead to an acceleration of the westerly winds over the southern NA at the expenseof more northernareas. Consequently, bothstationaryand transient eddiesfoster the southward shift of the NA eddy-driven jet during glacial winter times

    Millennial changes in North American wildfire and soil activity over the last glacial cycle

    Get PDF
    Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent Dansgaard-­‐Oeschger (DO) events. However prior to the last deglaciation, little is known about the response of North American vegetation to such rapid climate changes and especially about the response of biomass burning, an important factor for regional changes in radiative forcing. Here we use continuous, high-­‐resolution ammonium (NH4+) records derived from the NGRIP and GRIP ice cores to document both North American NH4+ background emissions from soils and wildfire frequency over the last 110,000 yr. Soil emissions increased on orbital timescales with warmer climate, related to the northward expansion of vegetation due to reduced ice-­‐covered areas. During Marine Isotope Stage (MIS) 3 DO warm events, a higher fire recurrence rate is recorded, while NH4+ soil emissions rose only slowly during longer interstadial warm periods, in line with slow ice sheet shrinkage and delayed ecosystem changes. Our results indicate that sudden warming events had little impact on NH4+ soil emissions and NH4+ aerosol transport to Greenland during the glacial but triggered a significant increase in the frequency of fire occurrence.This paper has greatly benefitted from the Sir Nicholas Shackleton fellowship, Clare Hall, University of Cambridge, U.K., awarded to HF in 2014. The Division for Climate and Environmental Physics, Physics Institute, University of Bern acknowledges the long-­‐term financial support of ice core research by the Swiss National Science Foundation (SNSF) and the Oeschger Centre for Climate Change Research. EW is supported by a Royal Society professorship. NGRIP is directed and organized by the Department of Geophysics at the Niels Bohr Institute for Astronomy, Physics and Geophysics, University of Copenhagen. It is supported by funding agencies in Denmark (SNF), Belgium (FNRS-­‐CFB), France (IPEV and INSU/CNRS), Germany (AWI), Iceland (RannIs), Japan (MEXT), Sweden (SPRS), Switzerland (SNSF) and the USA (NSF, Office of Polar Programs).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ngeo249

    Simulating climate and stable water isotopes during the Last Interglacial using a coupled climate-isotope model

    Get PDF
    Understanding the dynamics of warm climate states has gained increasing importance in the face of anthropogenic climate change, and while it is possible to simulate warm interglacial climates, these simulated results cannot be evaluated without the aid of geochemical proxies. One such proxy is δ18O, which allows for inference about both a climate state's hydrology and temperature. We utilize a stable water isotope equipped climate model to simulate three stages during the Last Interglacial (LIG), corresponding to 130, 125, and 120 kyr before present, using forcings for orbital configuration as well as greenhouse gases. We discover heterogeneous responses in the mean δ18O signal to the climate forcing, with large areas of depletion in the LIG δ18O signal over the tropical Atlantic, the Sahel, and the Indian subcontinent, and with enrichment over the Pacific and Arctic Oceans. While we find that the climatology mean relationship between δ18O and temperature remains stable during the LIG, we also discover that this relationship is not spatially consistent. Our results suggest that great care must be taken when comparing δ18O records of different paleoclimate archives with the results of climate models as both the qualitative and quantitative interpretation of δ18O variations as a proxy for past temperature changes may be problematic due to the complexity of the signals
    corecore