25 research outputs found

    High tide or riptide on the cosmic shoreline? A water-rich atmosphere or stellar contamination for the warm super-Earth GJ 486b from JWST observations

    Get PDF
    Planets orbiting M-dwarf stars are prime targets in the search for rocky exoplanet atmospheres. The small size of M dwarfs renders their planets exceptional targets for transmission spectroscopy, facilitating atmospheric characterization. However, it remains unknown whether their host stars' highly variable extreme-UV radiation environments allow atmospheres to persist. With JWST, we have begun to determine whether or not the most favorable rocky worlds orbiting M dwarfs have detectable atmospheres. Here, we present a 2.8–5.2 μm JWST NIRSpec/G395H transmission spectrum of the warm (700 K, 40.3× Earth's insolation) super-Earth GJ 486b (1.3 R⊕ and 3.0 M⊕). The measured spectrum from our two transits of GJ 486b deviates from a flat line at 2.2σ − 3.3σ, based on three independent reductions. Through a combination of forward and retrieval models, we determine that GJ 486b either has a water-rich atmosphere (with the most stringent constraint on the retrieved water abundance of H2O > 10% to 2σ) or the transmission spectrum is contaminated by water present in cool unocculted starspots. We also find that the measured stellar spectrum is best fit by a stellar model with cool starspots and hot faculae. While both retrieval scenarios provide equal quality fits (χν2=1.0{\chi }_{\nu }^{2}=1.0) to our NIRSpec/G395H observations, shorter wavelength observations can break this degeneracy and reveal if GJ 486b sustains a water-rich atmosphere

    Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection

    Get PDF
    Identification of habitable planets beyond our solar system is a key goal of current and future space missions. Yet habitability depends not only on the stellar irradiance, but equally on constituent parts of the planetary atmosphere. Here we show, for the first time, that radiatively active mineral dust will have a significant impact on the habitability of Earth-like exoplanets. On tidally-locked planets, dust cools the day-side and warms the night-side, significantly widening the habitable zone. Independent of orbital configuration, we suggest that airborne dust can postpone planetary water loss at the inner edge of the habitable zone, through a feedback involving decreasing ocean coverage and increased dust loading. The inclusion of dust significantly obscures key biomarker gases (e.g. ozone, methane) in simulated transmission spectra, implying an important influence on the interpretation of observations.We demonstrate that future observational and theoretical studies of terrestrial exoplanets must consider the effect of dust

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’)1–3, and thus the formation processes of the primary atmospheres of hot gas giants4–6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7–9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10–12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models

    The transiting exoplanet community early release science program for JWST

    Get PDF
    The James Webb Space Telescope (JWST) presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. However, the high-precision, time-series observations required for such investigations have unique technical challenges, and prior experience with other facilities indicates that there will be a steep learning curve when JWST becomes operational. In this paper we describe the science objectives and detailed plans of the Transiting Exoplanet Community Early Release Science (ERS) Program, which is a recently approved program for JWST observations early in Cycle 1. The goal of this project, for which the obtained data will have no exclusive access period, is to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST, while also providing a compelling set of representative datasets that will enable immediate scientific breakthroughs. The Transiting Exoplanet Community ERS Program will exercise the time-series modes of all four JWST instruments that have been identified as the consensus highest priorities, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The observations in this program were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. Community engagement in the project will be centered on a two-phase Data Challenge that culminates with the delivery of planetary spectra, time-series instrument performance reports, and open-source data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST mission

    Observing Exoplanets with the James Webb Space Telescope

    Get PDF
    The census of exoplanets has revealed an enormous variety of planets or- biting stars of all ages and spectral types: planets in orbits of less than a day to frigid worlds in orbits over 100 AU; planets with masses 10 times that of Jupiter to planets with masses less than that of Earth; searingly hot planets to temperate planets in the Habitable Zone. The challenge of the coming decade is to move from demography to physical characterization. The James Webb Space Telescope (JWST) is poised to open a revolutionary new phase in our understanding of exoplanets with transit spectroscopy of relatively short period planets and coronagraphic imaging of ones with wide separations from their host stars. This article discusses the wide variety of exoplanet opportunities enabled by JWSTs sensitivity and stability, its high angular resolution, and its suite of powerful instruments. These capabilities will advance our understanding of planet formation, brown dwarfs, and the atmospheres of young to mature planets

    Exoplanet mass estimation for a sample of targets for the <i>Ariel</i> mission

    Get PDF
    Ariel’s ambitious goal to survey a quarter of known exoplanets will transform our knowledge of planetary atmospheres. Masses measured directly with the radial velocity technique are essential for well determined planetary bulk properties. Radial velocity masses will provide important checks of masses derived from atmospheric fits or alternatively can be treated as a fixed input parameter to reduce possible degeneracies in atmospheric retrievals. We quantify the impact of stellar activity on planet mass recovery for the Ariel mission sample using Sun-like spot models scaled for active stars combined with other noise sources. Planets with necessarily well-determined ephemerides will be selected for characterisation with Ariel. With this prior requirement, we simulate the derived planet mass precision as a function of the number of observations for a prospective sample of Ariel targets. We find that quadrature sampling can significantly reduce the time commitment required for follow-up RVs, and is most effective when the planetary RV signature is larger than the RV noise. For a typical radial velocity instrument operating on a 4 m class telescope and achieving 1 m s−1 precision, between ~17% and ~ 37% of the time commitment is spent on the 7% of planets with mass Mp ⊕. In many low activity cases, the time required is limited by asteroseismic and photon noise. For low mass or faint systems, we can recover masses with the same precision up to ~3 times more quickly with an instrumental precision of ~10 cm s−1

    Early Release Science of the exoplanetWASP-39b with JWST NIRISS

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData Availability: The raw data from this study are publicly available via the Space Science Telescope Institute's Mikulski Archive for Space Telescopes (https://archive.stsci.edu/). The data which was used to create all of the figures in this manuscript are freely available on Zenodo and GitHub (Zenodo Link;https://github.com/afeinstein20/wasp39b_niriss_paper). All additional data is available upon request.Code Availability: The following are open-source pipelines written in Python that are available either through the Python Package Index (PyPI) or GitHub that were used throughout this work: Eureka! (https://github.com/kevin218/Eureka); nirHiss (https://github.com/afeinstein20/nirhiss); supreme-SPOON (https://github.com/radicamc/supreme-spoon); transitspectroscopy (https://github.com/nespinoza/transitspectroscopy/tree/dev); iraclis (https://github.com/uclexoplanets/Iraclis); juliet (https://github.com/nespinoza/juliet); chromatic (https://github.com/zkbt/chromatic); chromatic_fitting (https://github.com/catrionamurray/chromatic_fitting); ExoTiC-LD54, 121 (https://github.com/Exo-TiC/ExoTiC-LD); ExoTETHyS122 (https://github.com/uclexoplanets/ExoTETHyS); PICASO88,89 (https://github.com/natashabatalha/picaso); Virga94, 95 (https://github.com/natashabatalha/virga); CHIMERA (https://github.com/mrline/CHIMERA); PyMultiNest (https://github.com/JohannesBuchner/PyMultiNest); MultiNest (https://github.com/JohannesBuchner/MultiNest)The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality. Here, we present the transmission spectrum of WASP-39 b obtained using the SOSS mode of the NIRISS instrument on JWST. This spectrum spans 0.6–2.8m in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, and signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy element enhancement (“metallicity”) of ~10–30x the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet’s terminator.Leverhulme TrustUK Research and Innovatio

    Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData Availability: The data used in this paper are associated with JWST program ERS 1366 (observation #4) and are available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu). Science data processing version (SDP_VER) 2022_2a generated the uncalibrated data that we downloaded from MAST. We used JWST Calibration Pipeline software version (CAL_VER) 1.5.3 with modifications described in the text. We used calibration reference data from context (CRDS_CTX) 0916, except as noted in the text. All the data and models presented in this publication can be found at 10.5281/zenodo.7185300.Code Availability: The codes used in this publication to extract, reduce and analyze the data are as follows; STScI JWST Calibration pipeline45 (https://github.com/spacetelescope/jwst), Eureka!53 (https://eurekadocs.readthedocs.io/en/latest/), ExoTiC-JEDI47 (https://github.com/ExoTiC/ExoTiC-JEDI), juliet71 (https://juliet.readthedocs.io/en/latest/), Tiberius15,49,50, transitspectroscopy51 (https://github.com/nespinoza/transitspectroscopy). In addition, these made use of batman65 (http://lkreidberg.github.io/batman/docs/html/index.html), celerite86 (https://celerite.readthedocs.io/en/stable/), chromatic (https://zkbt.github.io/chromatic/), Dynesty72 (https://dynesty.readthedocs.io/en/stable/index.html), emcee69 (https://emcee.readthedocs.io/en/stable/), exoplanet83 (https://docs.exoplanet.codes/en/latest/), ExoTEP75–77, ExoTHETyS79 (https://github.com/ucl-exoplanets/ExoTETHyS), ExoTiCISM57 (https://github.com/Exo-TiC/ExoTiC-ISM), ExoTiC-LD58 (https://exoticld.readthedocs.io/en/latest/), george68 (https://george.readthedocs.io/en/latest/) JAX82 (https://jax.readthedocs.io/en/latest/), LMFIT70 (https://lmfit.github.io/lmfit-py/), Pylightcurve78 (https://github.com/ucl-exoplanets/pylightcurve), Pymc3138 (https://docs.pymc.io/en/v3/index.html) and Starry84 (https://starry.readthedocs.io/en/latest/), each of which use the standard python libraries astropy139,140, matplotlib141, numpy142, pandas143, scipy64 and xarray144. The atmospheric models used to fit the data can be found at ATMO[Tremblin2015,Drummond2016,Goyal2018,Goyal2020]88–91, PHOENIX92–94, PICASO98,99 (https://natashabatalha.github.io/picaso/), Virga98,107 (https://natashabatalha.github.io/virga/), and gCMCRT115 (https://github.com/ELeeAstro/gCMCRT).Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet’s chemical inventory requires high precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R≈600) transmission spectrum of an exoplanet atmosphere between 3–5 μm covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46× photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ ) and H2O (21.5σ ), and identify SO2 as the source of absorption at 4.1 μ m (4.8σ ). Best-fit atmospheric models range between 3× and 10× solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.Science and Technology Facilities Council (STFC)UKR
    corecore