359 research outputs found

    Zebrafish Models for Dyskeratosis Congenita Reveal Critical Roles of p53 Activation Contributing to Hematopoietic Defects through RNA Processing

    Get PDF
    Dyskeratosis congenita (DC) is a rare bone marrow failure syndrome in which hematopoietic defects are the main cause of mortality. The most studied gene responsible for DC pathogenesis is DKC1 while mutations in several other genes encoding components of the H/ACA RNP telomerase complex, which is involved in ribosomal RNA(rRNA) processing and telomere maintenance, have also been implicated. GAR1/nola1 is one of the four core proteins of the H/ACA RNP complex. Through comparative analysis of morpholino oligonucleotide induced knockdown of dkc1 and a retrovirus insertion induced mutation of GAR1/nola1 in zebrafish, we demonstrate that hematopoietic defects are specifically recapitulated in these models and that these defects are significantly reduced in a p53 null mutant background. We further show that changes in telomerase activity are undetectable at the early stages of DC pathogenesis but rRNA processing is clearly defective. Our data therefore support a model that deficiency in dkc1 and nola1 in the H/ACA RNP complex likely contributes to the hematopoietic phenotype through p53 activation associated with rRNA processing defects rather than telomerase deficiency during the initial stage of DC pathogenesis

    Thermodynamics as a theory of decision-making with information processing costs

    Full text link
    Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we propose an information-theoretic formalization of bounded rational decision-making where decision-makers trade off expected utility and information processing costs. Such bounded rational decision-makers can be thought of as thermodynamic machines that undergo physical state changes when they compute. Their behavior is governed by a free energy functional that trades off changes in internal energy-as a proxy for utility-and entropic changes representing computational costs induced by changing states. As a result, the bounded rational decision-making problem can be rephrased in terms of well-known concepts from statistical physics. In the limit when computational costs are ignored, the maximum expected utility principle is recovered. We discuss the relation to satisficing decision-making procedures as well as links to existing theoretical frameworks and human decision-making experiments that describe deviations from expected utility theory. Since most of the mathematical machinery can be borrowed from statistical physics, the main contribution is to axiomatically derive and interpret the thermodynamic free energy as a model of bounded rational decision-making.Comment: 26 pages, 5 figures, (under revision since February 2012

    Using formative research to develop the healthy eating component of the CHANGE! school-based curriculum intervention

    Get PDF
    Background: Childhood obesity is a significant public health concern. Many intervention studies have attempted to combat childhood obesity, often in the absence of formative or preparatory work. This study describes the healthy eating component of the formative phase of the Children’s Health Activity and Nutrition: Get Educated! (CHANGE!) project. The aim of the present study was to gather qualitative focus group and interview data regarding healthy eating particularly in relation to enabling and influencing factors, barriers and knowledge in children and adults (parents and teachers) from schools within the CHANGE! programme to provide populationspecific evidence to inform the subsequent intervention design. Methods: Semi-structured focus group interviews were conducted with children, parents and teachers across 11 primary schools in the Wigan borough of North West England. Sixty children (N = 24 boys), 33 parents (N = 4 male) and 10 teachers (N = 4 male) participated in the study. Interview questions were structured around the PRECEDE phases of the PRECEDE-PROCEED model. Interviews were transcribed verbatim and analysed using the pen-profiling technique. Results: The pen-profiles revealed that children’s knowledge of healthy eating was generally good, specifically many children were aware that fruit and vegetable consumption was ‘healthy’ (N = 46). Adults’ knowledge was also good, including restricting fatty foods, promoting fruit and vegetable intake, and maintaining a balanced diet. The important role parents play in children’s eating behaviours and food intake was evident. The emerging themes relating to barriers to healthy eating showed that external drivers such as advertising, the preferred sensory experience of “unhealthy” foods, and food being used as a reward may play a role in preventing healthy eating. Conclusions: Data suggest that; knowledge related to diet composition was not a barrier per se to healthy eating, and education showing how to translate knowledge into behavior or action is required. The key themes that emerged through the focus groups and pen-profiling data analysis technique will be used to inform and tailor the healthy eating component of the CHANGE! intervention study. Trial registration: Current Controlled Trials ISRCTN03863885 Keywords: Nutrition, Childhood obesity, Pen-profiles, Health, School

    Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity

    Get PDF
    Tuberculosis (TB) is an escalating global health problem and improved vaccines against TB are urgently needed. HLA-E restricted responses may be of interest for vaccine development since HLA-E displays very limited polymorphism (only 2 coding variants exist), and is not down-regulated by HIV-infection. The peptides from Mycobacterium tuberculosis (Mtb) potentially presented by HLA-E molecules, however, are unknown. Here we describe human T-cell responses to Mtb-derived peptides containing predicted HLA-E binding motifs and binding-affinity for HLA-E. We observed CD8(+) T-cell proliferation to the majority of the 69 peptides tested in Mtb responsive adults as well as in BCG-vaccinated infants. CD8(+) T-cells were cytotoxic against target-cells transfected with HLA-E only in the presence of specific peptide. These T cells were also able to lyse M. bovis BCG infected, but not control monocytes, suggesting recognition of antigens during mycobacterial infection. In addition, peptide induced CD8(+) T-cells also displayed regulatory activity, since they inhibited T-cell proliferation. This regulatory activity was cell contact-dependent, and at least partly dependent on membrane-bound TGF-beta. Our results significantly increase our understanding of the human immune response to Mtb by identification of CD8(+) T-cell responses to novel HLA-E binding peptides of Mtb, which have cytotoxic as well as immunoregulatory activity

    A High-Throughput Screen for Tuberculosis Progression

    Get PDF
    One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo

    Associations of Insulin and Insulin-Like Growth Factors with Physical Performance in Old Age in the Boyd Orr and Caerphilly Studies

    Get PDF
    Objective Insulin and the insulin-like growth factor (IGF) system regulate growth and are involved in determining muscle mass, strength and body composition. We hypothesised that IGF-I and IGF-II are associated with improved, and insulin with worse, physical performance in old age. Methods Physical performance was measured using the get-up and go timed walk and flamingo balance test at 63–86 years. We examined prospective associations of insulin, IGF-I, IGF-II and IGFBP-3 with physical performance in the UK-based Caerphilly Prospective Study (CaPS; n = 739 men); and cross-sectional insulin, IGF-I, IGF-II, IGFBP-2 and IGFBP-3 in the Boyd Orr cohort (n = 182 men, 223 women). Results In confounder-adjusted models, there was some evidence in CaPS that a standard deviation (SD) increase in IGF-I was associated with 1.5% faster get-up and go test times (95% CI: −0.2%, 3.2%; p = 0.08), but little association with poor balance, 19 years later. Coefficients in Boyd Orr were in the same direction as CaPS, but consistent with chance. Higher levels of insulin were weakly associated with worse physical performance (CaPS and Boyd Orr combined: get-up and go time = 1.3% slower per SD log-transformed insulin; 95% CI: 0.0%, 2.7%; p = 0.07; OR poor balance 1.13; 95% CI; 0.98, 1.29; p = 0.08), although associations were attenuated after controlling for body mass index (BMI) and co-morbidities. In Boyd Orr, a one SD increase in IGFBP-2 was associated with 2.6% slower get-up and go times (95% CI: 0.4%, 4.8% slower; p = 0.02), but this was only seen when controlling for BMI and co-morbidities. There was no consistent evidence of associations of IGF-II, or IGFBP-3 with physical performance. Conclusions There was some evidence that high IGF-I and low insulin levels in middle-age were associated with improved physical performance in old age, but estimates were imprecise. Larger cohorts are required to confirm or refute the findings

    SHIP-Deficient Dendritic Cells, Unlike Wild Type Dendritic Cells, Suppress T Cell Proliferation via a Nitric Oxide-Independent Mechanism

    Get PDF
    Dendritic cells (DCs) not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs) were far less capable than wild type (WT, SHIP+/+) GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated.In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO) production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs.These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s) employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented

    Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses

    Get PDF
    Background Monocytes and macrophages contribute to the dysfunction of immune responses in human filariasis. During patent infection monocytes encounter microfilariae in the blood, an event that occurs in asymptomatically infected filariasis patients that are immunologically hyporeactive. Aim To determine whether blood microfilariae directly act on blood monocytes and in vitro generated macrophages to induce a regulatory phenotype that interferes with innate and adaptive responses. Methodology and principal findings Monocytes and in vitro generated macrophages from filaria non-endemic normal donors were stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could show that monocytes stimulated with Mf lysate develop a defined regulatory phenotype, characterised by expression of the immunoregulatory markers IL-10 and PD-L1. Significantly, this regulatory phenotype was recapitulated in monocytes from Wuchereria bancrofti asymptomatically infected patients but not patients with pathology or endemic normals. Monocytes from non-endemic donors stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate expressed high levels of IL-10 and had suppressed phagocytic abilities. Finally Mf lysate applied during the differentiation of macrophages in vitro interfered with macrophage abilities to respond to subsequent LPS stimulation in a selective manner. Conclusions and significance Conclusively, our study demonstrates that Mf lysate stimulation of monocytes from healthy donors in vitro induces a regulatory phenotype, characterized by expression of PD-L1 and IL-10. This phenotype is directly reflected in monocytes from filarial patients with asymptomatic infection but not patients with pathology or endemic normals. We suggest that suppression of T cell functions typically seen in lymphatic filariasis is caused by microfilaria-modulated monocytes in an IL-10-dependent manner. Together with suppression of macrophage innate responses, this may contribute to the overall down-regulation of immune responses observed in asymptomatically infected patients
    corecore