Background Monocytes and macrophages contribute to the dysfunction of immune
responses in human filariasis. During patent infection monocytes encounter
microfilariae in the blood, an event that occurs in asymptomatically infected
filariasis patients that are immunologically hyporeactive. Aim To determine
whether blood microfilariae directly act on blood monocytes and in vitro
generated macrophages to induce a regulatory phenotype that interferes with
innate and adaptive responses. Methodology and principal findings Monocytes
and in vitro generated macrophages from filaria non-endemic normal donors were
stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could
show that monocytes stimulated with Mf lysate develop a defined regulatory
phenotype, characterised by expression of the immunoregulatory markers IL-10
and PD-L1. Significantly, this regulatory phenotype was recapitulated in
monocytes from Wuchereria bancrofti asymptomatically infected patients but not
patients with pathology or endemic normals. Monocytes from non-endemic donors
stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and
cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by
neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate
expressed high levels of IL-10 and had suppressed phagocytic abilities.
Finally Mf lysate applied during the differentiation of macrophages in vitro
interfered with macrophage abilities to respond to subsequent LPS stimulation
in a selective manner. Conclusions and significance Conclusively, our study
demonstrates that Mf lysate stimulation of monocytes from healthy donors in
vitro induces a regulatory phenotype, characterized by expression of PD-L1 and
IL-10. This phenotype is directly reflected in monocytes from filarial
patients with asymptomatic infection but not patients with pathology or
endemic normals. We suggest that suppression of T cell functions typically
seen in lymphatic filariasis is caused by microfilaria-modulated monocytes in
an IL-10-dependent manner. Together with suppression of macrophage innate
responses, this may contribute to the overall down-regulation of immune
responses observed in asymptomatically infected patients