979 research outputs found

    Diamonds in HD 97048

    Full text link
    We present adaptive optics high angular resolution (\sim0\farcs1) spectroscopic observations in the 3 μ\mum region of the Herbig Ae/Be star HD 97048. For the first time, we spatially resolve the emission in the diamond features at 3.43 and 3.53 μ\mum and in the adjacent continuum. Using both the intensity profiles along the slit and reconstructed two-dimensional images of the object, we derive full-width at half-maximum sizes consistent with the predictions for a circumstellar disk seen pole-on. The diamond emission originates in the inner region (R15R \lesssim 15 AU) of the disk.Comment: ApJLetter, in pres

    Exploring Brown Dwarf Disks

    Get PDF
    We discuss the spectral energy distribution of three very low mass objects in Chamaeleon I for which ground-based spectroscopy and photometry as well as ISO measurements in the mid-infrared are available (Comeron et al. 2000; Persi et al. 2000). One of these stars (Cha Halpha1) is a bona-fide brown dwarf, with mass 0.04-0.05 Msun. We show that the observed emission is very well described by models of circumstellar disks identical to those associated to T Tauri stars, scaled down to keep the ratio of the disk-to-star mass constant and to the appropriate stellar parameters. This result provides a first indication that the formation mechanism of T Tauri stars (via core contraction and formation of an accretion disk) extends to objects in the brown dwarf mass range.Comment: 4 pages, 4 figures, A&A Letters in pres

    X-Shooter study of accretion in ρ\rho-Ophiucus: very low-mass stars and brown dwarfs

    Get PDF
    We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of Macc with M* when comparing low-mass stars and BDs. Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in some of our recent works in other star-forming regions, and no significant differences in Macc due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the Macc-M* correlation confirms that Macc in the literature based on uncertain photospheric parameters and single accretion indicators, such as the Ha width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the photospheric and accretion properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract shortened to fit arXiv constraint

    The effect of local optically thick regions in the long-wave emission of young circumstellar disks

    Get PDF
    Multi-wavelength observations of protoplanetary disks in the sub-millimeter continuum have measured spectral indices values which are significantly lower than what is found in the diffuse interstellar medium. Under the assumption that mm-wave emission of disks is mostly optically thin, these data have been generally interpreted as evidence for the presence of mm/cm-sized pebbles in the disk outer regions. In this work we investigate the effect of possible local optically thick regions on the mm-wave emission of protoplanetary disks without mm/cm-sized grains. A significant local increase of the optical depth in the disk can be caused by the concentration of solid particles, as predicted to result from a variety of proposed physical mechanisms. We calculate the filling factors and implied overdensities these optically thick regions would need to significantly affect the millimeter fluxes of disks, and we discuss their plausibility. We find that optically thick regions characterized by relatively small filling factors can reproduce the mm-data of young disks without requesting emission from mm/cm-sized pebbles. However, these optically thick regions require dust overdensities much larger than what predicted by any of the physical processes proposed in the literature to drive the concentration of solids. We find that only for the most massive disks it is possible and plausible to imagine that the presence of optically thick regions in the disk is responsible for the low measured values of the mm spectral index. For the majority of the disk population, optically thin emission from a population of large mm-sized grains remains the most plausible explanation. The results of this analysis further strengthen the scenario for which the measured low spectral indices of protoplanetary disks at mm wavelengths are due to the presence of large mm/cm-sized pebbles in the disk outer regions.Comment: 13 pages, 2 figures, A&A in pres

    Brown dwarf disks with ALMA

    Get PDF
    We present ALMA continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J=3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks physical structure in dust. The results of our analysis show that the disks are relatively large, the smallest one with an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, on the main mechanisms proposed for the formation of brown dwarfs and very low mass stars, as well as on the potential of finding rocky and giant planets around very low mass objects.Comment: 15 pages, 10 figures, accepted for publication in Ap

    Trapping dust particles in the outer regions of protoplanetary disks

    Get PDF
    Aims. We attempt to explain grain growth to mm sized particles and their retention in the outer regions of protoplanetary disks, as observed at sub-mm and mm wavelengths, by investigating whether strong inhomogeneities in the gas density profiles can decelerate excessive radial drift and help the dust particles to grow. Methods. We use coagulation/fragmentation and disk-structure models, to simulate the evolution of dust in a bumpy surface density profile, which we mimic with a sinusoidal disturbance. For different values of the amplitude and length scale of the bumps, we investigate the ability of this model to produce and retain large particles on million-year timescales. In addition, we compare the pressure inhomogeneities considered in this work with the pressure profiles that come from magnetorotational instability. Using the Common Astronomy Software Applications ALMA simulator, we study whether there are observational signatures of these pressure inhomogeneities that can be seen with ALMA. Results. We present the conditions required to trap dust particles and the corresponding calculations predicting the spectral slope in the mm-wavelength range, to compare with current observations. Finally, we present simulated images using different antenna configurations of ALMA at different frequencies, to show that the ring structures will be detectable at the distances of either the Taurus Auriga or Ophiucus star-forming regions

    On the gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    Get PDF
    Transitional disks (TDs) are thought to be a late evolutionary stage of protoplanetary disks with dust depleted inner regions. The mechanism responsible for this depletion is still under debate. To constrain the models it is mandatory to have a good understanding of the properties of the gas content of the inner disk. Using X-Shooter broad band -UV to NIR- medium resolution spectroscopy we derive the stellar, accretion, and wind properties of a sample of 22 TDs. The analysis of these properties allows us to put strong constraints on the gas content in a region very close to the star (<0.2 AU) which is not accessible with any other observational technique. We fit the spectra with a self-consistent procedure to derive simultaneously SpT,Av,and mass accretion rates (Macc) of the targets. From forbidden emission lines we derive the wind properties of the targets. Comparing our findings to values for cTTs, we find that Macc and wind properties of 80% of the TDs in our sample, which is strongly biased towards strongly accreting objects, are comparable to those of cTTs. Thus, there are (at least) some TDs with Macc compatible with those of cTTs, irrespective of the size of the dust inner hole.Only in 2 cases Macc are much lower, while the wind properties are similar. We do not see any strong trend of Macc with the size of the dust depleted cavity, nor with the presence of a dusty optically thick disk close to the star. In the TDs in our sample there is a gas rich inner disk with density similar to that of cTTs disks. At least for some TDs, the process responsible of the inner disk clearing should allow for a transfer of gas from the outer disk to the inner region. This should proceed at a rate that does not depend on the physical mechanism producing the gap seen in the dust emission and results in a gas density in the inner disk similar to that of unperturbed disks around stars of similar mass.Comment: Accepted on Astronomy & Astrophysics. Abstract shortened to fit arXiv constraint

    Grain growth in the envelopes and disks of Class I protostars

    Get PDF
    We present new 3 mm ATCA data of two Class I Young Stellar Objects in the Ophiucus star forming region: Elias29 and WL12. For our analysis we compare them with archival 1.1 mm SMA data. In the (u,v) plane the two sources present a similar behavior: a nearly constant non-zero emission at long baselines, which suggests the presence of an unresolved component and an increase of the fluxes at short baselines, related to the presence of an extended envelope. Our data analysis leads to unusually low values of the spectral index α1.13mm\alpha_{\rm 1.1-3mm}, which may indicate that mm-sized dust grains have already formed both in the envelopes and in the disk-like structures at such early stages. To explore the possible scenarios for the interpretation of the sources we perform a radiative transfer modeling using a Monte Carlo code, in order to take into account possible deviations from the Rayleigh-Jeans and optically thin regimes. Comparison between the model outputs and the observations indicates that dust grains may form aggregates up to millimeter size already in the inner regions of the envelopes of Class I YSOs. Moreover, we conclude that the embedded disk-like structures in our two Class Is are probably very compact, in particular in the case of WL12, with outer radii down to tens of AU.Comment: 12 pages, 8 figures, Accepted for publication in A&
    corecore