569 research outputs found
Recommended from our members
Nonperiodic Optical Flickering In Hz Herculis
NASA NGR 44-012-209NSF GP-25901, GP-41796Astronom
Property differences among the four major Candida albicans strain clades
Peer reviewedPublisher PD
Optimal placement of a limited number of observations for period searches
Robotic telescopes present the opportunity for the sparse temporal placement
of observations when period searching. We address the best way to place a
limited number of observations to cover the dynamic range of frequencies
required by an observer. We show that an observation distribution geometrically
spaced in time can minimise aliasing effects arising from sparse sampling,
substantially improving signal detection quality. The base of the geometric
series is however a critical factor in the overall success of this strategy.
Further, we show that for such an optimal distribution observations may be
reordered, as long as the distribution of spacings is preserved, with almost no
loss of quality. This implies that optimal observing strategies can retain
significant flexibility in the face of scheduling constraints, by providing
scope for on-the-fly adaptation. Finally, we present optimal geometric
samplings for a wide range of common observing scenarios, with an emphasis on
practical application by the observer at the telescope. Such a sampling
represents the best practical empirical solution to the undersampling problem
that we are aware of. The technique has applications to robotic telescope and
satellite observing strategies, where target acquisition overheads mean that a
greater total target exposure time (and hence signal-to-noise) can often in
practice be achieved by limiting the number of observations.Comment: 8 pages with 16 figure
Evolutionary Timescale of the DAV G117-B15A: The Most Stable Optical Clock Known
We observe G117-B15A, the most precise optical clock known, to measure the
rate of change of the main pulsation period of this blue-edge DAV white dwarf.
Even though the obtained value is only within 1 sigma, Pdot = (2.3 +/- 1.4) x
10^{-15} s/s, it is already constraining the evolutionary timescale of this
cooling white dwarf star.Comment: Accepted for publication in ApJ
New Pulsating DB White Dwarf Stars from the Sloan Digital Sky Survey
We are searching for new He atmosphere white dwarf pulsators (DBVs) based on
the newly found white dwarf stars from the spectra obtained by the Sloan
Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better
known cousins, the H atmosphere white dwarf pulsators (DAVs or ZZ Ceti stars).
Since the evolution of white dwarf stars is characterized by cooling,
asteroseismological studies of DBVs give us opportunities to study white dwarf
structure at a different evolutionary stage than the DAVs. The hottest DBVs are
thought to have neutrino luminosities exceeding their photon luminosities
(Winget et al. 2004), a quantity measurable through asteroseismology.
Therefore, they can also be used to study neutrino physics in the stellar
interior. So far we have discovered nine new DBVs, doubling the number of
previously known DBVs. Here we report the new pulsators' lightcurves and power
spectra.Comment: 15 pages, 2 figures, 3 tables, ApJ accepte
Probing the internal rotation of pre-white dwarf stars with asteroseismology: the case of PG 122+200
We put asteroseismological constraints on the internal rotation profile of
the GW Vir (PG1159-type) star PG 0122+200. To this end we employ a
state-of-the-art asteroseismological model for this star and we assess the
expected frequency splittings induced by rotation adopting a forward approach
in which we compare the theoretical frequency separations with the observed
ones assuming different types of plausible internal rotation profiles. We also
employ two asteroseismological inversion methods for the inversion of the
rotation profile of PG 0122+200. We find evidence for differential rotation in
this star. We demonstrate that the frequency splittings of the rotational
multiplets exhibited by PG 0122+200 are compatible with a rotation profile in
which the central regions are spinning about 2.4 times faster than the stellar
surface.Comment: 8 pages, 6 figures, 2 tables. To be published in MNRA
Mode identification of Pulsating White Dwarfs using the HST
We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV
stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the
Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to
the optical pulsation amplitude and determine the pulsation indices. We find
that for essentially all observed pulsation modes, the amplitude rises to the
ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do
not find any pulsation mode visible only in the ultraviolet, nor any modes
whose phase flips by 180 degrees; in the ultraviolet, as would be expected if
high l pulsations were excited. We find one periodicity in the light curve of
G185-32, at 141 s, which does not fit theoretical models for the change of
amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200
Characterizing the pulsations of the ZZ Ceti star KUV 02464+3239
We present the results on period search and modeling of the cool DAV star KUV
02464+3239. Our observations resolved the multiperiodic pulsational behaviour
of the star. In agreement with its position near the red edge of the DAV
instability strip, it shows large amplitude, long period pulsation modes, and
has a strongly non-sinusoidal light curve. We determined 6 frequencies as
normal modes and revealed remarkable short-term amplitude variations. A
rigorous test was performed for the possible source of amplitude variation:
beating of modes, effect of noise, unresolved frequencies or rotational
triplets. Among the best-fit models resulting from a grid search, we selected 3
that gave l=1 solutions for the largest amplitude modes. These models had
masses of 0.645, 0.650 and 0.680 M_Sun. The 3 `favoured' models have M_H
between 2.5x10^-5 - 6.3x10^-6 M_* and give 14.2 - 14.8 mas seismological
parallax. The 0.645 M_Sun (11400 K) model also matches the spectroscopic log g
and T_eff within 1 sigma. We investigated the possibility of mode trapping and
concluded that while it can explain high amplitude modes, it is not required.Comment: 11 pages, 8 figures, accepted for publication in MNRA
Age of the Universe: Influence of the Inhomogeneities on the global Expansion-Factor
For the first time we calculate quantitatively the influence of
inhomogeneities on the global expansion factor by averaging the Friedmann
equation. In the framework of the relativistic second-order
Zel'dovich-approximation scheme for irrotational dust we use observational
results in form of the normalisation constant fixed by the COBE results and we
check different power spectra, namely for adiabatic CDM, isocurvature CDM, HDM,
WDM, Strings and Textures. We find that the influence of the inhomogeneities on
the global expansion factor is very small. So the error in determining the age
of the universe using the Hubble constant in the usual way is negligible. This
does not imply that the effect is negligible for local astronomical
measurements of the Hubble constant. Locally the determination of the
redshift-distance relation can be strongly influenced by the peculiar velocity
fields due to inhomogeneities. Our calculation does not consider such effects,
but is contrained to comparing globally homogeneous and averaged inhomogeneous
matter distributions. In addition we relate our work to previous treatments.Comment: 10 pages, version accepted by Phys. Rev.
Asteroseismological constraints on the pulsating planetary nebula nucleus (PG1159-type) RX J2117.1+3412
We present asteroseismological inferences on RX J2117.1+3412, the hottest
known pulsating PG1159 star. Our results are based on full PG1159 evolutionary
models recently presented by Miller Bertolami & Althaus (2006). We performed
extensive computations of adiabatic g-mode pulsation periods on PG1159
evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo. PG1159
stellar models are extracted from the complete evolution of progenitor stars
started from the ZAMS, through the thermally pulsing AGB and born-again phases
to the domain of the PG 1159 stars. We constrained the stellar mass of RX
J2117.1+3412 by comparing the observed period spacing with the asymptotic
period spacing and with the average of the computed period spacings. We also
employed the individual observed periods to find a representative seismological
model. We derive a stellar mass of 0.56-0.57 Mo from the period spacing data
alone. In addition, we found a best-fit model representative for RX
J2117.1+3412 with an effective temperature of 163,400 K, a stellar mass of
0.565 Mo, and a surface gravity log g= 6.61. The derived stellar luminosity and
radius are log(L/Lo)= 3.36 and log(R/Ro)= -1.23, respectively, and the He-rich
envelope thickness is Menv= 0.02 Mo. We derive a seismic distance of 452 pc and
a linear size of the planetary nebula of 1.72 pc. These inferences seem to
solve the discrepancy between the RX J2117.1+3412 evolutionary timescale and
the size of the nebula. All of the seismological tools we use concur to the
conclusion that RX J2117.1+3412 must have a stellar mass of 0.565 Mo much in
agreement with recent asteroseismology studies and in clear conflict with the
predictions of spectroscopy plus evolutionary tracks.Comment: 10 pages, 6 figures, 2 tables. Accepted for publication in Astronomy
and Astrophysics. Erratum available as a separate fil
- …
