569 research outputs found

    Optimal placement of a limited number of observations for period searches

    Get PDF
    Robotic telescopes present the opportunity for the sparse temporal placement of observations when period searching. We address the best way to place a limited number of observations to cover the dynamic range of frequencies required by an observer. We show that an observation distribution geometrically spaced in time can minimise aliasing effects arising from sparse sampling, substantially improving signal detection quality. The base of the geometric series is however a critical factor in the overall success of this strategy. Further, we show that for such an optimal distribution observations may be reordered, as long as the distribution of spacings is preserved, with almost no loss of quality. This implies that optimal observing strategies can retain significant flexibility in the face of scheduling constraints, by providing scope for on-the-fly adaptation. Finally, we present optimal geometric samplings for a wide range of common observing scenarios, with an emphasis on practical application by the observer at the telescope. Such a sampling represents the best practical empirical solution to the undersampling problem that we are aware of. The technique has applications to robotic telescope and satellite observing strategies, where target acquisition overheads mean that a greater total target exposure time (and hence signal-to-noise) can often in practice be achieved by limiting the number of observations.Comment: 8 pages with 16 figure

    Evolutionary Timescale of the DAV G117-B15A: The Most Stable Optical Clock Known

    Get PDF
    We observe G117-B15A, the most precise optical clock known, to measure the rate of change of the main pulsation period of this blue-edge DAV white dwarf. Even though the obtained value is only within 1 sigma, Pdot = (2.3 +/- 1.4) x 10^{-15} s/s, it is already constraining the evolutionary timescale of this cooling white dwarf star.Comment: Accepted for publication in ApJ

    New Pulsating DB White Dwarf Stars from the Sloan Digital Sky Survey

    Full text link
    We are searching for new He atmosphere white dwarf pulsators (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, the H atmosphere white dwarf pulsators (DAVs or ZZ Ceti stars). Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. So far we have discovered nine new DBVs, doubling the number of previously known DBVs. Here we report the new pulsators' lightcurves and power spectra.Comment: 15 pages, 2 figures, 3 tables, ApJ accepte

    Probing the internal rotation of pre-white dwarf stars with asteroseismology: the case of PG 122+200

    Get PDF
    We put asteroseismological constraints on the internal rotation profile of the GW Vir (PG1159-type) star PG 0122+200. To this end we employ a state-of-the-art asteroseismological model for this star and we assess the expected frequency splittings induced by rotation adopting a forward approach in which we compare the theoretical frequency separations with the observed ones assuming different types of plausible internal rotation profiles. We also employ two asteroseismological inversion methods for the inversion of the rotation profile of PG 0122+200. We find evidence for differential rotation in this star. We demonstrate that the frequency splittings of the rotational multiplets exhibited by PG 0122+200 are compatible with a rotation profile in which the central regions are spinning about 2.4 times faster than the stellar surface.Comment: 8 pages, 6 figures, 2 tables. To be published in MNRA

    Mode identification of Pulsating White Dwarfs using the HST

    Full text link
    We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to the optical pulsation amplitude and determine the pulsation indices. We find that for essentially all observed pulsation modes, the amplitude rises to the ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do not find any pulsation mode visible only in the ultraviolet, nor any modes whose phase flips by 180 degrees; in the ultraviolet, as would be expected if high l pulsations were excited. We find one periodicity in the light curve of G185-32, at 141 s, which does not fit theoretical models for the change of amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200

    Characterizing the pulsations of the ZZ Ceti star KUV 02464+3239

    Full text link
    We present the results on period search and modeling of the cool DAV star KUV 02464+3239. Our observations resolved the multiperiodic pulsational behaviour of the star. In agreement with its position near the red edge of the DAV instability strip, it shows large amplitude, long period pulsation modes, and has a strongly non-sinusoidal light curve. We determined 6 frequencies as normal modes and revealed remarkable short-term amplitude variations. A rigorous test was performed for the possible source of amplitude variation: beating of modes, effect of noise, unresolved frequencies or rotational triplets. Among the best-fit models resulting from a grid search, we selected 3 that gave l=1 solutions for the largest amplitude modes. These models had masses of 0.645, 0.650 and 0.680 M_Sun. The 3 `favoured' models have M_H between 2.5x10^-5 - 6.3x10^-6 M_* and give 14.2 - 14.8 mas seismological parallax. The 0.645 M_Sun (11400 K) model also matches the spectroscopic log g and T_eff within 1 sigma. We investigated the possibility of mode trapping and concluded that while it can explain high amplitude modes, it is not required.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    Age of the Universe: Influence of the Inhomogeneities on the global Expansion-Factor

    Get PDF
    For the first time we calculate quantitatively the influence of inhomogeneities on the global expansion factor by averaging the Friedmann equation. In the framework of the relativistic second-order Zel'dovich-approximation scheme for irrotational dust we use observational results in form of the normalisation constant fixed by the COBE results and we check different power spectra, namely for adiabatic CDM, isocurvature CDM, HDM, WDM, Strings and Textures. We find that the influence of the inhomogeneities on the global expansion factor is very small. So the error in determining the age of the universe using the Hubble constant in the usual way is negligible. This does not imply that the effect is negligible for local astronomical measurements of the Hubble constant. Locally the determination of the redshift-distance relation can be strongly influenced by the peculiar velocity fields due to inhomogeneities. Our calculation does not consider such effects, but is contrained to comparing globally homogeneous and averaged inhomogeneous matter distributions. In addition we relate our work to previous treatments.Comment: 10 pages, version accepted by Phys. Rev.

    Asteroseismological constraints on the pulsating planetary nebula nucleus (PG1159-type) RX J2117.1+3412

    Get PDF
    We present asteroseismological inferences on RX J2117.1+3412, the hottest known pulsating PG1159 star. Our results are based on full PG1159 evolutionary models recently presented by Miller Bertolami & Althaus (2006). We performed extensive computations of adiabatic g-mode pulsation periods on PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo. PG1159 stellar models are extracted from the complete evolution of progenitor stars started from the ZAMS, through the thermally pulsing AGB and born-again phases to the domain of the PG 1159 stars. We constrained the stellar mass of RX J2117.1+3412 by comparing the observed period spacing with the asymptotic period spacing and with the average of the computed period spacings. We also employed the individual observed periods to find a representative seismological model. We derive a stellar mass of 0.56-0.57 Mo from the period spacing data alone. In addition, we found a best-fit model representative for RX J2117.1+3412 with an effective temperature of 163,400 K, a stellar mass of 0.565 Mo, and a surface gravity log g= 6.61. The derived stellar luminosity and radius are log(L/Lo)= 3.36 and log(R/Ro)= -1.23, respectively, and the He-rich envelope thickness is Menv= 0.02 Mo. We derive a seismic distance of 452 pc and a linear size of the planetary nebula of 1.72 pc. These inferences seem to solve the discrepancy between the RX J2117.1+3412 evolutionary timescale and the size of the nebula. All of the seismological tools we use concur to the conclusion that RX J2117.1+3412 must have a stellar mass of 0.565 Mo much in agreement with recent asteroseismology studies and in clear conflict with the predictions of spectroscopy plus evolutionary tracks.Comment: 10 pages, 6 figures, 2 tables. Accepted for publication in Astronomy and Astrophysics. Erratum available as a separate fil
    corecore