315 research outputs found
Pilot study for assessment of prevalence of intrafamilial hepatitis C transmission in relation to salivary viral load among infected patients with and without chronic renal failure
HCV-RNA in saliva of HCV patients provides a biological basis for its potential transmission. HCV viremia is particularly high in HCV patients on hemodialysis. This study aimed to evaluate the prevalence of HCV in saliva of HCV patients with and without renal failure, and the possible role of intrafamilial transmission of the virus. Twenty HCV patients were enrolled in this study. They were divided into two groups: 10 HCV infected patients without renal failure (Group I) and 10 with renal failure (Group II).  Detection of HCV-RNA by quantitative RT-PCR in serum and saliva of both groups was done. Thirty-eight family members of both groups were included for the detection of serum HCV antibody. The percentage of the saliva-positive patients for HCV was significantly higher in the renal failure group (70%) than the other group (40%) (p<0.05). There was insignificant statistical difference between the two groups as regards infectivity to their family contacts. Also there was insignificant correlation between the level of viremia and the intra familial transmission with a mean + SD (9,33,250 +24,501) in negative relatives and a mean + SD(79,912+26,879) in positive relatives (p> 0.05). But a significant correlation was revealed between the level of viremia and saliva positivity, with a mean + SD(12,95,666 + 1792) in saliva-positive patients and a mean +SD (3,74,465 + 2150) in saliva-negative patients (p< 0.05). There was a highly significant difference between infectivity of HCV saliva-positive patients and saliva-negative patients to their family contacts (p< 0.001). Conclusion: Increased percentage of HCV detection in saliva of HCV patients with renal failure on HD may cause spreading of HCV in HD units among RF patients. Also there was increased percentage of interfamilial infectivity among the saliva-positive patients to their relatives and this suggests that saliva might have an infective role.Keywords: Salivary; HCV; HCV PCR; Intrafamilial transmissio
PIWI silencing mechanism involving the retrotransposon nimbus orchestrates resistance to infection with Schistosoma mansoni in the snail vector, Biomphalaria glabrata
Copyright: © 2021 Smith et al. Background
Schistosomiasis remains widespread in many regions despite efforts at its elimination. By examining changes in the transcriptome at the host-pathogen interface in the snail Biomphalaria glabrata and the blood fluke Schistosoma mansoni, we previously demonstrated that an early stress response in juvenile snails, manifested by induction of heat shock protein 70 (Hsp 70) and Hsp 90 and of the reverse transcriptase (RT) domain of the B. glabrata non-LTR- retrotransposon, nimbus, were critical for B. glabrata susceptibility to S. mansoni. Subsequently, juvenile B. glabrata BS-90 snails, resistant to S. mansoni at 25°C become susceptible by the F2 generation when maintained at 32°C, indicating an epigenetic response.
Methodology/Principal findings
To better understand this plasticity in susceptibility of the BS-90 snail, mRNA sequences were examined from S. mansoni exposed juvenile BS-90 snails cultured either at 25°C (non-permissive temperature) or 32°C (permissive). Comparative analysis of transcriptomes from snails cultured at the non-permissive and permissive temperatures revealed that whereas stress related transcripts dominated the transcriptome of susceptible BS-90 juvenile snails at 32°C, transcripts encoding proteins with a role in epigenetics, such as PIWI (BgPiwi), chromobox protein homolog 1 (BgCBx1), histone acetyltransferase (BgHAT), histone deacetylase (BgHDAC) and metallotransferase (BgMT) were highly expressed in those cultured at 25°C. To identify robust candidate transcripts that will underscore the anti-schistosome phenotype in B. glabrata, further validation of the differential expression of the above transcripts was performed by using the resistant BS-90 (25°C) and the BBO2 susceptible snail stock whose genome has now been sequenced and represents an invaluable resource for molecular studies in B. glabrata. A role for BgPiwi in B. glabrata susceptibility to S. mansoni, was further examined by using siRNA corresponding to the BgPiwi encoding transcript to suppress expression of BgPiwi, rendering the resistant BS-90 juvenile snail susceptible to infection at 25°C. Given transposon silencing activity of PIWI as a facet of its role as guardian of the integrity of the genome, we examined the expression of the nimbus RT encoding transcript at 120 min after infection of resistant BS90 piwi-siRNA treated snails. We observed that nimbus RT was upregulated, indicating that modulation of the transcription of the nimbus RT was associated with susceptibility to S. mansoni in BgPiwi-siRNA treated BS-90 snails. Furthermore, treatment of susceptible BBO2 snails with the RT inhibitor lamivudine, before exposure to S. mansoni, blocked S. mansoni infection concurrent with downregulation of the nimbus RT transcript and upregulation of the BgPiwi encoding transcript in the lamivudine-treated, schistosome-exposed susceptible snails.
Conclusions and significance
These findings support a role for the interplay of BgPiwi and nimbus in the epigenetic modulation of plasticity of resistance/susceptibility in the snail-schistosome relationship.
Author summary
Progress is being made to eliminate schistosomiasis, a tropical disease that remains endemic in the tropics and neotropics. In 2020, WHO proposed controlling the snail population as part of a strategy toward reducing schistosomiasis, a vector borne disease, by 2025. The life cycle of the causative parasite is, however, complex and in the absence of vaccines, new drugs, and access to clean water and sanitation, reduction of schistosomiasis will remain elusive. To break the parasite’s life cycle during the snail stage of its development, a better understanding of the molecular basis of how schistosomes survive, or not, in the snail is required. By examining changes in the transcriptome at the host-pathogen interface in the snail Biomphalaria glabrata and Schistosoma mansoni, we showed that early stress response, manifested by the induction of Heat Shock Proteins (Hsps) and the RT domain of the non-LTR retrotransposon, nimbus, were critical for snail susceptibility. Subsequently, juvenile B. glabrata BS-90 snails, resistant to S. mansoni at 25°C were observed to become susceptible by the F2 generation when maintained at 32°C, indicating an epigenetic response. This study confirms these earlier results and shows an interplay between PIWI and nimbus in the anti-schistosome response in the snail host.National Science Foundation (US) (Grant number Award No. 162281); CBT Knight foundation (US); Brunel University (UK)
New resources for functional analysis of omics data for the genus Aspergillus
<p>Abstract</p> <p>Background</p> <p>Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus <it>Aspergillus </it>comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely <it>A. nidulans</it>.</p> <p>Results</p> <p>Based on protein homology, we mapped 97% of the 3,498 GO annotated <it>A. nidulans </it>genes to at least one of seven other <it>Aspergillus </it>species: <it>A. niger</it>, <it>A. fumigatus</it>, <it>A. flavus</it>, <it>A. clavatus</it>, <it>A. terreus</it>, <it>A. oryzae </it>and <it>Neosartorya fischeri</it>. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all <it>Aspergillus </it>species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (<url>http://www.broadinstitute.org/fetgoat/index.html</url>). To demonstrate the value of those new resources for functional analysis of omics data for the genus <it>Aspergillus</it>, we performed two case studies analyzing microarray data recently published for <it>A. nidulans</it>, <it>A. niger </it>and <it>A. oryzae</it>.</p> <p>Conclusions</p> <p>We mapped <it>A. nidulans </it>GO annotation to seven other <it>Aspergilli</it>. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus <it>Aspergillus</it>. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.</p
A review of seismic hazard assessment studies and hazard description in the building codes for Egypt
Transcript Expression Analysis of Putative Trypanosoma brucei GPI-Anchored Surface Proteins during Development in the Tsetse and Mammalian Hosts
Human African Trypanosomiasis is a devastating disease caused by the parasite Trypanosoma brucei. Trypanosomes live extracellularly in both the tsetse fly and the mammal. Trypanosome surface proteins can directly interact with the host environment, allowing parasites to effectively establish and maintain infections. Glycosylphosphatidylinositol (GPI) anchoring is a common posttranslational modification associated with eukaryotic surface proteins. In T. brucei, three GPI-anchored major surface proteins have been identified: variant surface glycoproteins (VSGs), procyclic acidic repetitive protein (PARP or procyclins), and brucei alanine rich proteins (BARP). The objective of this study was to select genes encoding predicted GPI-anchored proteins with unknown function(s) from the T. brucei genome and characterize the expression profile of a subset during cyclical development in the tsetse and mammalian hosts. An initial in silico screen of putative T. brucei proteins by Big PI algorithm identified 163 predicted GPI-anchored proteins, 106 of which had no known functions. Application of a second GPI-anchor prediction algorithm (FragAnchor), signal peptide and trans-membrane domain prediction software resulted in the identification of 25 putative hypothetical proteins. Eighty-one gene products with hypothetical functions were analyzed for stage-regulated expression using semi-quantitative RT-PCR. The expression of most of these genes were found to be upregulated in trypanosomes infecting tsetse salivary gland and proventriculus tissues, and 38% were specifically expressed only by parasites infecting salivary gland tissues. Transcripts for all of the genes specifically expressed in salivary glands were also detected in mammalian infective metacyclic trypomastigotes, suggesting a possible role for these putative proteins in invasion and/or establishment processes in the mammalian host. These results represent the first large-scale report of the differential expression of unknown genes encoding predicted T. brucei surface proteins during the complete developmental cycle. This knowledge may form the foundation for the development of future novel transmission blocking strategies against metacyclic parasites
Characterization of inflorescence-predominant chitinase gene in Metroxylon sagu via differential display
Chitinase is an enzyme that catalyzes the degradation of chitin, commonly induced upon the attack of pathogens and other stresses. A cDNA (MsChi1) was isolated from Metroxylon sagu and expressed predominantly in the inflorescence tissue of M. sagu, suggesting its role in developmental processes. The chitinase cDNA was detected and isolated via differential display and rapid amplification of cDNA ends (RACE). Primers specific to M. saguchitinase were used as probes to amplify the 3′-end and 5′-end regions of chitinase cDNA. Transcript analysis showed that chitinase is expressed in inflorescence and meristem tissues but was not detected in the leaf tissue. Sequence analysis of amplified cDNA fragments of 3′-end and 5′-end regions indicated that the chitinase cDNA was successfully amplified. The M. saguchitinase cDNA isolated was approximately 1,143 bp long and corresponds to 312 predicted amino acids. Alignments of nucleotide and amino acid have grouped this chitinase to family 19 class I chitinase
Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms
Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B) leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS), generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM). These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF) cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries
Genomes of the Most Dangerous Epidemic Bacteria Have a Virulence Repertoire Characterized by Fewer Genes but More Toxin-Antitoxin Modules
We conducted a comparative genomic study based on a neutral approach to identify genome specificities associated with the virulence capacity of pathogenic bacteria. We also determined whether virulence is dictated by rules, or if it is the result of individual evolutionary histories. We systematically compared the genomes of the 12 most dangerous pandemic bacteria for humans ("bad bugs") to their closest non-epidemic related species ("controls").We found several significantly different features in the "bad bugs", one of which was a smaller genome that likely resulted from a degraded recombination and repair system. The 10 Cluster of Orthologous Group (COG) functional categories revealed a significantly smaller number of genes in the "bad bugs", which lacked mostly transcription, signal transduction mechanisms, cell motility, energy production and conversion, and metabolic and regulatory functions. A few genes were identified as virulence factors, including secretion system proteins. Five "bad bugs" showed a greater number of poly (A) tails compared to the controls, whereas an elevated number of poly (A) tails was found to be strongly correlated to a low GC% content. The "bad bugs" had fewer tandem repeat sequences compared to controls. Moreover, the results obtained from a principal component analysis (PCA) showed that the "bad bugs" had surprisingly more toxin-antitoxin modules than did the controls.We conclude that pathogenic capacity is not the result of "virulence factors" but is the outcome of a virulent gene repertoire resulting from reduced genome repertoires. Toxin-antitoxin systems could participate in the virulence repertoire, but they may have developed independently of selfish evolution
- …