23 research outputs found

    Model for Polarized and Unpolarized Parton Density Functions in the Nucleon

    Get PDF
    We present a physical model for polarized and unpolarized structure functions and parton density functions (PDFs) of the proton and the neutron. It reproduces the data on F_2^p(x,Q^2) for 0.00001<x<1 and 2.5<Q^2<5000 GeV^2, F_2^p(x)-F_2^n(x), F_2^n(x)/F_2^p(x), xg(x), dbar(x)-ubar(x), d(x)/u(x), the Gottfried sum, the fractional momentum of charged partons and the polarized structure functions g_1^{p,n}(x), at various Q^2. We present for the first time, proton and neutron PDFs which do not assume charge symmetry. Contrary to the common practice, we explain polarized and unpolarized data with a single model.Comment: version to appear in Phys. Lett. B; a note added at the end of the paper; no other change; latex, 10 pages, 4 ps figure

    Eta meson rescattering effects in the p + 6Li --> eta + 7Be reaction near threshold

    Full text link
    The p + 6Li --> eta + 7Be reaction has been investigated with an emphasis on the eta meson and 7Be interaction in the final state. Considering the 6Li and 7Be nuclei to be alpha-d and alpha-3He clusters respectively, the reaction is modelled to proceed via the p + d [alpha] --> 3He [\alpha] + eta reaction with the alpha remaining a spectator. The eta meson interacts with 7Be via multiple scatterings on the 3He and alpha clusters inside 7Be. The individual eta-3He and eta-alpha scatterings are evaluated using few body equations for the eta-3N and eta-4N systems with a coupled channel eta-N interaction as an input. Calculations including four low-lying states of 7Be lead to a double hump structure in the total cross section corresponding to the L=1(J=(1/2),(3/2))L = 1 (J = (1/2)^-, (3/2)^-) and L=3(J=(5/2),(7/2))L = 3 (J = (5/2)^-, (7/2)^-) angular momentum states. The humps arise due to the off-shell rescattering of the eta meson on the 7Be nucleus in the final state.Comment: New results and references adde

    Determining the size of the proton

    Full text link
    A measurement of the Lamb shift of 49,881.88(76) GHz in muonic hydrogen in conjunction with theoretical estimates of the proton structure effects was recently used to deduce an accurate but rather small radius of the proton. Such an important shift in the understanding of fundamental values needs reconfirmation. Using a different approach with electromagnetic form factors of the proton, we obtain a new expression for the transition energy, Δ=E2P3/2f=2E2S1/2f=1\Delta = E_{2P_{{3}/{2}}}^{f=2} - E_{2S_{{1}/{2}}}^{f=1}, in muonic hydrogen and deduce a proton radius, rp=0.831r_p = 0.831 fm.Comment: 20 pages LaTe

    Statistical model for pionic partons

    Get PDF
    We present a model for the structure of the pion. Based on ideas of a recently developed statistical model of the nucleon, we assume the pion to be a gas of partons. The finite-size corrections (FSC) are incorporated through two parameters. Using the same two FSC parameters for the proton and pion we reproduce quantitatively the data on πNμ+μX\pi^- N \to \mu^+ \mu^- X Drell-Yan production and valence quark distribution of the pion.Comment: revised manuscript, 11 pages, LaTex, including 4 figures, to appear in Phys. Lett.

    Breit type equation for mesonic atoms

    Full text link
    The finite size effects and relativistic corrections in pionic and kaonic hydrogen are evaluated by generalizing the Breit equation for a spin-0 - spin-1/2 amplitude with the inclusion of the hadron electromagnetic form factors. The agreement of the relativistic corrections to the energies of the mesonic atoms with other methods used to evaluate them is not exact, but reasonably good. The precision values of the energy shifts due to the strong interaction, extracted from data, are however subject to the hadronic form factor uncertainties.Comment: 11 pages Late

    Collision times in pi-pi and pi-K scattering and spectroscopy of meson resonances

    Full text link
    Using the concept of collision time (time delay) introduced by Eisenbud and Wigner and its connection to on-shell intermediate unstable states, we study mesonic resonances in pi-pi and pi-K scattering. The time-delay method proves its usefulness by revealing the spectrum of the well-known rho- and K*-mesons and by supporting some speculations on rho-mesons in the 1200 MeV region. We use this method further to shed some light on more speculative meson resonances, among others the enigmatic scalars. We confirm the existence of chiralons below 1 GeV in the unflavoured and strange meson sector.Comment: 22 pages LaTex, 8 figure

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Z^* Resonances: Phenomenology and Models

    Get PDF
    We explore the phenomenology of, and models for, the Z^* resonances, the lowest of which is now well established, and called the Theta. We provide an overview of three models which have been proposed to explain its existence and/or its small width, and point out other relevant predictions, and potential problems, for each. The relation to what is known about KN scattering, including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form

    On Born approximation in black hole scattering

    Full text link
    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordstr\"{o}m and Reissner-Nordstr\"{o}m-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes

    Dwell-time distributions in quantum mechanics

    Full text link
    Some fundamental and formal aspects of the quantum dwell time are reviewed, examples for free motion and scattering off a potential barrier are provided, as well as extensions of the concept. We also examine the connection between the dwell time of a quantum particle in a region of space and flux-flux correlations at the boundaries, as well as operational approaches and approximations to measure the flux-flux correlation function and thus the second moment of the dwell time, which is shown to be characteristically quantum, and larger than the corresponding classical moment even for freely moving particles.Comment: To appear in "Time in Quantum Mechanics, Vol. 2", Springer 2009, ed. by J. G. Muga, A. Ruschhaupt and A. del Camp
    corecore