22 research outputs found

    Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1

    Get PDF
    High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10−9) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10−8), with the alleles showing opposite effects on the risks of the two cancers

    Molecular characterization of the metabotropic glutamate receptor family in Caenorhabditis elegans

    No full text
    mGluRs (metabotropic glutamate receptors) are G-protein-coupled receptors that play an important neuromodulatory role in the brain. Glutamatergic transmission itself plays a fundamental role in the simple nervous system of the model organism Caenorhabditis elegans, but little is known about the contribution made by mGluR signalling. The sequenced genome of C. elegans predicts three distinct genes, mgl-1, mgl-2 and mgl-3 (designated Y4C6A.2). We have used in silico and cDNA analyses to investigate the genes encoding mgls. Our results indicate that mgl genes constitute a gene family made up of three distinct subclasses of receptor. Our transcript analysis highlights potential for complex gene regulation with respect to both expression and splicing. Further, we identify that the predicted proteins encoded by mgls harbour structural motifs that are likely to regulate function. Taken together, this molecular characterization provides a platform to further investigate mGluR function in the model organism C. elegans

    A novel association between a SNP in CYBRD1 and serum ferritin levels in a cohort study of HFE hereditary haemochromatosis

    Get PDF
    There is emerging evidence that there are genetic modifiers of iron indices for HFE gene mutation carriers at risk of hereditary hemochromatosis. A random sample, stratified by HFE genotype, of 863 from a cohort of 31 192 people of northern European descent provided blood samples for genotyping of 476 single nucleotide polymorphisms (SNPs) in 44 genes involved in iron metabolism. Single SNP association testing, using linear regression models adjusted for sex, menopause and HFE genotype, was conducted for four continuously distributed outcomes: serum ferritin (log transformed), transferrin saturation, serum transferrin, and serum iron. The SNP rs884409 in CYBRD1 is a novel modifier specific to HFE C282Y homozygotes. Median unadjusted serum ferritin concentration decreased from 1194 microg/l (N = 27) to 387 microg/l (N = 16) for male C282Y homozygotes and from 357 microg/l (N = 42) to 69 microg/l (N = 12) for females, comparing those with no copies to those with one copy of rs884409. Functional testing of this CYBRD1 promoter polymorphism using a heterologous expression assay resulted in a 30% decrease in basal promoter activity relative to the common genotype (P = 0.004). This putative genetic modifier of iron overload expression accounts for 11% (95% CI 0.4%, 22.6%) of the variance in serum ferritin levels of C282Y homozygotes
    corecore