188 research outputs found

    Final Year Projects as a means of University-Industry relationship measurement

    Get PDF
    [ENG] There have been numerous calls for effective collaboration and more meaningful engagement between universities and industry. University-industry partnerships have long been realized as critical component for the successful development of a good university. Over the last few decades the university-industry partnership has been on the increase. A university-industry partnership enables especially effective communication with those “customers”, thereby promoting means for continuing improvements in University quality (Baharom et al., 2009, Zunaira, 2005). This interaction has been developed incrementally over the years and the factors that affect it include the firms, the faculty, universities and the government as well as the individuals. However, the interactions between these components yield a system that is highly dynamic (Al-Fares et al., 2005). This relationship has gained considerable more attention in the recent years realizing that these ties are highly beneficial especially after it became apparent to researchers on both sides that this relationship is yielding significant pay-offs to the nation, to the firms and to the academia. Nevertheless, although there are several studies that research into the conflict between the teaching and research missions of universities, there are some studies that suggest that these activities are not so misaligned after all, stressing the importance of students in university industry relations, as an agent that increases the appeal of university scientists to industry agents seeking research partners in academe (Leonidov Ponomariov, 2006). The focus of this study is a major yet understudied component of university-industry relations: students, and their final year project (FYP onwards) as a means of measuring the university-industry interactions. This paper presents observations from the last 10 years of experience during which 992 projects were performed within 145 production and service organizations, involving students in industrial engineering and industrial management degrees

    Avaliação sensorial de cebolinha (Allium cepa, L.) orgânica para conserva.

    Get PDF
    bitstream/CPACT-2009-09/11943/1/documento_233.pd

    Meeting high precision requirements of additively manufactured components through hybrid manufacturing

    Get PDF
    A hybrid approach combining the laser powder bed fusion (LPBF) process and post-processing operations through 5-axis milling was employed to manufacture a Ti6Al4V aerospace component. From the design step, the requirements and needs in all the stages of the Hybrid Additive Manufacturing process were taken into account. A numerical simulation of distortions promoted by residual stresses during the additive process was employed to consider material allowance. The status of the as-built and post-processed component was analysed through scanning and CMM inspection and roughness measurements. The 3D scanned model of the as-built LPBF-ed component was used to understand the distortion behaviour of the component and compared to the numerical simulation. Finally, 5-axis milling operations were conducted in some critical surfaces in order to improve surface quality and dimensional accuracy of the as-built com- ponent. The inspection of the as-built and post-processed component showed the improvement achieved through the proposed hybrid approach. The work aims to provide the baselines needed to enable the metal Hybrid Additive Manufacturing of components with complex geometries where mandatory precision is required by integrating high accuracy machining operations as post-processing technique

    Nanoscale magnetic structure and properties of solution-derived self-assembled La0.7Sr0.3MnO3 islands

    Full text link
    The following article appeared in Journal of Applied Physics 111.2 (2012): 024307 and may be found at http://scitation.aip.org/content/aip/journal/jap/111/2/10.1063/1.3677985Strain-induced self-assembled La0.7Sr0.3MnO 3 nanoislands of lateral size 50-150 nm and height 10-40 nm have been grown on yttria-stabilized zirconia (001)-substrates from ultradiluted chemical solutions based on metal propionates. The nanoislands grow highly relaxed withstanding the epitaxial relation (001)LSMO[110]//(001) Ysz[010] and show bulk-like average magnetic properties in terms of Curie temperature and saturation magnetization. The interplay of the magnetocrystalline and shape anisotropy within the nanoisland ensemble results in an in-plane magnetic anisotropy with a magnetocrystalline constant K 1(150K) = -(5±1) kJ/m3 and in-plane easy axis along the [110] -La0.7Sr0.3MnO3 direction as measured, for the first time, through ferromagnetic resonance experiments. Magnetic force microscopy studies reveal the correlation between nanoisland size and its magnetic domain structure in agreement with micromagnetic simulations. In particular, we have established the required geometric conditions for single domain, multidomain, and vortex configurations.We acknowledge the financial support from MEC (MAT2008-01022, Consolider NANOSELECT and FPU), Comunidad Autónoma de Madrid (CAM S2009/MAT-1467), Generalitat de Catalunya (Catalan Pla de Recerca 2009-SGR- 770 and XaRMAE), and EU (NESPA). R. D. Zysler and C. A. Ramos acknowledge support from PIP-1333(2007) CONICET and PICT 829 (2006) and PICT 832(2006) ANPCyT of Argentina. Serveis Científic-Tècnics from Universitat de Barcelona and Servei de Micròscopia from Universitat Auto`noma de Barcelona are acknowledged for TEM facilities

    Meeting high precision requirements of additively manufactured components through hybrid manufacturing

    Get PDF
    A hybrid approach combining the laser powder bed fusion (LPBF) process and post-processing operations through 5-axis milling was employed to manufacture a Ti6Al4V aerospace component. From the design step, the requirements and needs in all the stages of the Hybrid Additive Manufacturing process were taken into account. A numerical simulation of distortions promoted by residual stresses during the additive process was employed to consider material allowance. The status of the as-built and post-processed component was analysed through scanning and CMM inspection and roughness measurements. The 3D scanned model of the as-built LPBF-ed component was used to understand the distortion behaviour of the component and compared to the numerical simulation. Finally, 5-axis milling operations were conducted in some critical surfaces in order to improve surface quality and dimensional accuracy of the as-built com-ponent. The inspection of the as-built and post-processed component showed the improvement achieved through the proposed hybrid approach. The work aims to provide the baselines needed to enable the metal Hybrid Additive Manufacturing of components with complex geometries where mandatory precision is required by integrating high accuracy machining operations as post-processing technique.(c) 2022 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/)

    Association of the T allele of an intronic single nucleotide polymorphism in the colony stimulating factor 1 receptor with Crohn's disease: a case-control study

    Get PDF
    BACKGROUND: Polymorphisms in several genes (NOD2, MDR1, SLC22A4) have been associated with susceptibility to Crohn's disease. Identification of the remaining Crohn's susceptibility genes is essential for the development of disease-specific targets for immunotherapy. Using gene expression analysis, we identified a differentially expressed gene on 5q33, the colony stimulating factor 1 receptor (CSF1R) gene, and hypothesized that it is a Crohn's susceptibility gene. The CSF1R gene is involved in monocyte to macrophage differentiation and in innate immunity. METHODS: Patients provided informed consent prior to entry into the study as approved by the Institutional Review Board at LSU Health Sciences Center. We performed forward and reverse sequencing of genomic DNA from 111 unrelated patients with Crohn's disease and 108 controls. We also stained paraffin-embedded, ileal and colonic tissue sections from patients with Crohn's disease and controls with a polyclonal antibody raised against the human CSF1R protein. RESULTS: A single nucleotide polymorphism (A2033T) near a Runx1 binding site in the eleventh intron of the colony stimulating factor 1 receptor was identified. The T allele of this single nucleotide polymorphism occurred in 27% of patients with Crohn's disease but in only 13% of controls (X(2 )= 6.74, p < 0.01, odds ratio (O.R.) = 2.49, 1.23 < O.R. < 5.01). Using immunohistochemistry, positive staining with a polyclonal antibody to CSF1R was observed in the superficial epithelium of ileal and colonic tissue sections. CONCLUSIONS: We conclude that the colony stimulating factor receptor 1 gene may be a susceptibility gene for Crohn's disease

    Expression, Purification and Characterization of Arginase from Helicobacter pylori in Its Apo Form

    Get PDF
    Arginase, a manganese-dependent enzyme that widely distributed in almost all creatures, is a urea cycle enzyme that catalyzes the hydrolysis of L-arginine to generate L-ornithine and urea. Compared with the well-studied arginases from animals and yeast, only a few eubacterial arginases have been characterized, such as those from H. pylori and B. anthracis. However, these enzymes used for arginase activity assay were all expressed with LB medium, as low concentration of Mn2+ was detectable in the medium, protein obtained were partially Mn2+ bonded, which may affect the results of arginase activity assay. In the present study, H. pylori arginase (RocF) was expressed in a Mn2+ and Co2+ free minimal medium, the resulting protein was purified through affinity and gel filtration chromatography and the apo-form of RocF was confirmed by flame photometry analysis. Gel filtration indicates that the enzyme exists as monomer in solution, which was unique as compared with homologous enzymes. Arginase activity assay revealed that apo-RocF had an acidic pH optimum of 6.4 and exhibited metal preference of Co2+>Ni2+>Mn2+. We also confirmed that heat-activation and reducing regents have significant impact on arginase activity of RocF, and inhibits S-(2-boronoethyl)-L-Cysteine (BEC) and Nω-hydroxy-nor-Arginine (nor-NOHA) inhibit the activity of RocF in a dose-dependent manner

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Spanish Government (Ministry of Economy and Competitiveness, MINECO) and FEDER Projects: CGL2014 52135-C3-3-R, ESP2017-89463-C3-3-R, CGL2014-59946-R, CGL2015-65569-R, CGL2015-64284-C2-2-R, CGL2015-64284-C2-1-R, CGL2016-78075-P, GL2008-02879/BTE, LEDDRA 243857, RECARE-FP7, CGL2017-83866-C3-1-R, and PCIN-2017-061/AEI. Dhais Peña-Angulo received a “Juan de la Cierva” postdoctoral contract (FJCI-2017-33652 Spanish Ministry of Economy and Competitiveness, MEC). Ana Lucia acknowledge the "Brigitte-Schlieben-Lange-Programm". The “Geoenvironmental Processes and Global Change” (E02_17R) was financed by the Aragón Government and the European Social Fund. José Andrés López-Tarazón acknowledges the Secretariat for Universities and Research of the Department of the Economy and Knowledge of the Autonomous Government of Catalonia for supporting the Consolidated Research Group 2014 SGR 645 (RIUS- Fluvial Dynamics Research Group). Artemi Cerdà thank the funding of the OCDE TAD/CRP JA00088807. José Martínez-Fernandez acknowledges the project Unidad de Excelencia CLU-2018-04 co-funded by FEDER and Castilla y León Government. Ane Zabaleta is supported by the Hydro-Environmental Processes consolidated research group (IT1029-16, Basque Government). This paper has the benefit of the Lab and Field Data Pool created within the framework of the COST action CONNECTEUR (ES1306)

    Modulation of the Arginase Pathway in the Context of Microbial Pathogenesis: A Metabolic Enzyme Moonlighting as an Immune Modulator

    Get PDF
    Arginine is a crucial amino acid that serves to modulate the cellular immune response during infection. Arginine is also a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The generation of nitric oxide from arginine is responsible for efficient immune response and cytotoxicity of host cells to kill the invading pathogens. On the other hand, the conversion of arginine to ornithine and urea via the arginase pathway can support the growth of bacterial and parasitic pathogens. The competition between iNOS and arginase for arginine can thus contribute to the outcome of several parasitic and bacterial infections. There are two isoforms of vertebrate arginase, both of which catalyze the conversion of arginine to ornithine and urea, but they differ with regard to tissue distribution and subcellular localization. In the case of infection with Mycobacterium, Leishmania, Trypanosoma, Helicobacter, Schistosoma, and Salmonella spp., arginase isoforms have been shown to modulate the pathology of infection by various means. Despite the existence of a considerable body of evidence about mammalian arginine metabolism and its role in immunology, the critical choice to divert the host arginine pool by pathogenic organisms as a survival strategy is still a mystery in infection biology
    • …
    corecore