61 research outputs found

    Detailed characterizations of the new Mines Douai comparative reactivity method instrument via laboratory experiments and modeling

    Get PDF
    The hydroxyl (OH) radical is an important oxidant in the troposphere, which controls the lifetime of most air quality- and climate-related trace gases. However, there are still uncertainties concerning its atmospheric budget, and integrated measurements of OH sinks have been valuable to improve this aspect. Among the analytical tools used for measuring total OH reactivity in ambient air, the comparative reactivity method (CRM) is spreading rapidly in the atmospheric community. However, measurement artifacts have been highlighted for this technique, and additional work is needed to fully characterize them. In this study, we present the new Mines Douai CRM instrument, with an emphasis on the corrections that need to be applied to ambient measurements of total OH reactivity. Measurement artifacts identified in the literature have been investigated, including (1) a correction for a change in relative humidity between the measurement steps leading to different OH levels, (2) the formation of spurious OH in the sampling reactor when hydroperoxy radicals (HO2) react with nitrogen monoxide (NO), (3) not operating the CRM under pseudo-first-order kinetics, and (4) the dilution of ambient air inside the reactor. The dependences of these artifacts on various measurable parameters, such as the pyrrole-to-OH ratio and the bimolecular reaction rate constants of ambient trace gases with OH, have also been studied. Based on these observations, parameterizations are proposed to correct ambient OH reactivity measurements. On average, corrections of 5.2 ± 3.2, 9.2 ± 15.7, and 8.5 ± 5.8 s-1 were respectively observed for (1), (2) and (3) during a field campaign performed in Dunkirk, France (summer 2014). Numerical simulations have been performed using a box model to check whether experimental observations mentioned above are consistent with our understanding of the chemistry occurring in the CRM reactor. Two different chemical mechanisms have been shown to reproduce the magnitude of corrections (2) and (3). In addition, these simulations reproduce their dependences on the pyrrole-to-OH ratio and on bimolecular reaction rate constants of gases reacting with OH. The good agreement found between laboratory experiments and model simulations gives us confidence in the proposed parameterizations. However, it is worth noting that the numerical values given in this study are suitable for the Mines Douai instrument and may not be appropriate for other CRM instruments. It is recommended that each group characterize its own instrument following the recommendations given in this study. An assessment of performances for the Mines Douai instrument, including a propagation of errors from the different corrections, indicates a limit of detection of 3.0 s-1 and total uncertainties of 17-25 % for OH reactivity values higher than 15 s-1 and NOx mixing ratios lower than 30 ppbv

    Field measurements of methylglyoxal using proton transfer reaction time-of-flight mass spectrometry and comparison to the DNPH–HPLC–UV method

    Get PDF
    Methylglyoxal (MGLY) is an important atmospheric α-dicarbonyl species for which photolysis acts as a significant source of peroxy radicals, contributing to the oxidizing capacity of the atmosphere and, as such, the formation of secondary pollutants such as organic aerosols and ozone. However, despite its importance, only a few techniques exhibit time resolutions and detection limits that are suitable for atmospheric measurements.This study presents the first field measurements of MGLY by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) performed during the ChArMEx SOP2 field campaign. This campaign took place at a Mediterranean site characterized by intense biogenic emissions and low levels of anthropogenic trace gases. Concomitant measurements of MGLY were performed using the 2,4-dinitrophenylhydrazine (DNPH) derivatization technique and high performance liquid chromatography (HPLC) with UV detection. PTR-ToF-MS and DNPH–HPLC measurements were compared to determine whether these techniques can perform reliable measurements of MGLY.Ambient time series revealed levels of MGLY ranging from 28 to 365&thinsp;pptv, with a clear diurnal cycle due to elevated concentrations of primary biogenic species during the daytime, and its oxidation led to large production rates of MGLY. A scatter plot of the PTR-ToF-MS and DNPH–HPLC measurements indicates a reasonable correlation (R2 = 0.48) but a slope significantly lower than unity (0.58±0.05) and a significant intercept of 88.3±8.0&thinsp;pptv. A careful investigation of the differences between the two techniques suggests that this disagreement is not due to spectrometric interferences from H3O+(H2O)3 or methyl ethyl ketone (or butanal) detected at m∕z 73.050 and m∕z 73.065, respectively, which are close to the MGLY m∕z of 73.029. The differences are more likely due to uncorrected sampling artifacts such as overestimated collection efficiency or loss of MGLY into the sampling line for the DNPH–HPLC technique or unknown isobaric interfering compounds such as acrylic acid and propanediol for the PTR-ToF-MS.Calculations of MGLY loss rates with respect to OH oxidation and direct photolysis indicate similar contributions for these two loss pathways.</p

    Non-methane hydrocarbon variability in Athens during wintertime: the role of traffic and heating

    Get PDF
    Non-methane hydrocarbons (NMHCs) play an important role in atmospheric chemistry, contributing to ozone and secondary organic aerosol formation. They can also serve as tracers for various emission sources such as traffic, solvents, heating and vegetation. The current work presents, for the first time to our knowledge, time-resolved data of NMHCs, from two to six carbon atoms, for a period of 5 months (mid-October 2015 to mid-February 2016) in the greater Athens area (GAA), Greece. The measured NMHC levels are among the highest reported in the literature for the Mediterranean area during winter months, and the majority of the compounds demonstrate a remarkable day-to-day variability. Their levels increase by up to factor of 4 from autumn (October–November) to winter (December–February). Microscale meteorological conditions, especially wind speed in combination with the planetary boundary layer (PBL) height, seem to contribute significantly to the variability of NMHC levels, with an increase of up to a factor of 10 under low wind speed ( &lt; 3&thinsp;m&thinsp;s−1) conditions; this reflects the impact of local sources rather than long-range transport. All NMHCs demonstrated a pronounced bimodal, diurnal pattern with a morning peak followed by a second peak before midnight. The amplitude of both peaks gradually increased towards winter, in comparison to autumn, by a factor of 3 to 6 and closely followed that of carbon monoxide (CO), which indicates a contribution from sources other than traffic, e.g., domestic heating (fuel or wood burning). By comparing the NMHC diurnal variability with that of black carbon (BC), its fractions associated with wood burning (BCwb) and fossil fuel combustion (BCff), and with source profiles we conclude that the morning peak is attributed to traffic while the night peak is mainly attributed to heating. With respect to the night peak, the selected tracers and source profiles clearly indicate a contribution from both traffic and domestic heating (fossil fuel and wood burning). NMHCs slopes versus BCwb are similar when compared with those versus BCff (slight difference for ethylene), which indicates that NMHCs are most likely equally produced by wood and oil fossil fuel burning.</p

    Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment

    Get PDF
    The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques. An intercomparison of two OH reactivity instruments, one based on the comparative reactivity method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump-probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques. It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of volatile organic compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air. Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios up to 100 ppbv. The CRM technique has hitherto mainly been used in low-NOx environments, i.e. environments with ambient NOx mixing ratios lower than a few ppbv, due to a measurement artifact generated by ambient NO inside the sampling reactor. However, this study shows that this technique can also be used under NOx-rich conditions if a NOx-dependent correction is carefully applied on the OH reactivity measurements. A full suite of 52 VOCs, NOx, and other inorganic species were monitored during this intercomparison. An investigation of the OH reactivity budget for this urban site suggests that this suite of trace gases can account for the measured total OH reactivity

    Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS

    Get PDF
    In September 2017, we conducted a proton-transfer-reaction mass-spectrometry (PTR-MS) intercomparison campaign at the CESAR observatory, a rural site in the central Netherlands near the village of Cabauw. Nine research groups deployed a total of 11 instruments covering a wide range of instrument types and performance. We applied a new calibration method based on fast injection of a gas standard through a sample loop. This approach allows calibrations on timescales of seconds, and within a few minutes an automated sequence can be run allowing one to retrieve diagnostic parameters that indicate the performance status. We developed a method to retrieve the mass-dependent transmission from the fast calibrations, which is an essential characteristic of PTR-MS instruments, limiting the potential to calculate concentrations based on counting statistics and simple reaction kinetics in the reactor/drift tube. Our measurements show that PTR-MS instruments follow the simple reaction kinetics if operated in the standard range for pressures and temperature of the reaction chamber (i.e. 1-4 mbar, 30-120 degrees, respectively), as well as a reduced field strength E/N in the range of 100-160 Td. If artefacts can be ruled out, it becomes possible to quantify the signals of uncalibrated organics with accuracies better than +/- 30 %. The simple reaction kinetics approach produces less accurate results at E/N levels below 100 Td, because significant fractions of primary ions form water hydronium clusters. Deprotonation through reactive collisions of protonated organics with water molecules needs to be considered when the collision energy is a substantial fraction of the exoergicity of the proton transfer reaction and/or if protonated organics undergo many collisions with water molecules.Peer reviewe

    Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR

    Get PDF
    Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum JĂŒlich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection  < 1 s−1 at a time resolution of 30 s to a few minutes) is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivity method (CRM) has a higher limit of detection of 2 s−1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied to account for known effects of, for example, deviations from pseudo first-order conditions, nitrogen oxides or water vapour on the measurement. Methods used to derive these corrections vary among the different CRM instruments. Measurements taken with a flow-tube instrument combined with the direct detection of OH by chemical ionisation mass spectrometry (CIMS) show limitations in cases of high reactivity and high NO concentrations but were accurate for low reactivity (< 15 s−1) and low NO (< 5 ppbv) conditions

    ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO GAW and EMEP observation networks

    Get PDF
    The performance of 18 European institutions involved in long-term non-methane hydrocarbon (NMHC) measurements in ambient air within the framework of the Global Atmosphere Watch (GAW) and the European Monitoring and Evaluation Programme (EMEP) was assessed with respect to data quality objectives (DQOs) of ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) and GAW. Compared to previous intercomparison studies the DQOs define a novel approach to assess and ensure a high quality of the measurements. Having already been adopted by GAW, the ACTRIS DQOs are demanding with deviations to a reference value of less than 5% and a repeatability of better than 2% for NMHC mole fractions above 0.1 nmol mol(-1). The participants of the intercomparison analysed two dry gas mixtures in pressurised cylinders, a 30-component NMHC mixture in nitrogen (NMHC_N-2 /at approximately 1 nmol mol(-1) and a whole air sample (NMHC_air), following a standardised operation procedure including zero-and calibration gas measurements. Furthermore, participants had to report details on their instruments and assess their measurement uncertainties. The NMHCs were analysed either by gas chromatography-flame ionisation detection (GC-FID) or by gas chromatography-mass spectrometry (GC-MS). For the NMHC_N-2 measurements, 62% of the reported values were within the 5% deviation class corresponding to the ACTRIS DQOs. For NMHC_air, generally more frequent and larger deviations to the assigned values were observed, with 50% of the reported values within the 5% deviation class. Important contributors to the poorer performance in NMHC_air compared to NMHC_N-2 were a more complex matrix and a larger span of NMHC mole fractions (0.03-2.5 nmol mol(-1)). The performance of the participating laboratories were affected by the different measurement procedures such as the usage of a two-step vs. a one-step calibration, breakthroughs of C-2-C-3 hydrocarbons in the focussing trap, blank values in zero-gas measurements (especially for those systems using a Nafion (R) Dryer), adsorptive losses of aromatic compounds, and insufficient chromatographic separation.Peer reviewe
    • 

    corecore