147 research outputs found

    RNase T1 mimicking artificial ribonuclease

    Get PDF
    Recently, artificial ribonucleases (aRNases)ā€”conjugates of oligodeoxyribonucleotides and peptide (LR)4-G-amideā€”were designed and assessed in terms of the activity and specificity of RNA cleavage. The conjugates were shown to cleave RNA at Pyr-A and Gā€“X sequences. Variations of oligonucleotide length and sequence, peptide and linker structure led to the development of conjugates exhibiting Gā€“X cleavage specificity only. The most efficient catalyst is built of nonadeoxyribonucleotide of unique sequence and peptide (LR)4-G-NH2 connected by the linker of three abasic deoxyribonucleotides (conjugate pep-9). Investigation of the cleavage specificity of conjugate pep-9 showed that the compound is the first single-stranded guanine-specific aRNase, which mimics RNase T1. Rate enhancement of RNA cleavage at Gā€“X linkages catalysed by pep-9 is 108 compared to non-catalysed reaction, pep-9 cleaves these linkages only 105-fold less efficiently than RNase T1 (kcat_RNase T1/kcat_pep-9 = 105)

    Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment

    Get PDF
    BACKGROUND: Biomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment. METHODS: Concentrations of total Hg (THg), inorganic Hg (IHg) and organic Hg (OHg, assumed to be methylmercury; MeHg) were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored. RESULTS: About 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels. CONCLUSION: The use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure. Using THg concentration in plasma as a measure of IHg exposure can lead to significant exposure misclassification. THg in urine is a suitable proxy for IHg exposure

    Impact of HIV on CD8+ T Cell CD57 Expression Is Distinct from That of CMV and Aging

    Get PDF
    Background: Chronic antigenic stimulation by cytomegalovirus (CMV) is thought to increase ā€˜ā€˜immunosenesenceā€™ā€™ of aging, characterized by accumulation of terminally differentiated CD28- CD8+ T cells and increased CD57, a marker of proliferative history. Whether chronic HIV infection causes similar effects is currently unclear. Methods: We compared markers of CD8+ T cell differentiation (e.g., CD28, CD27, CCR7, CD45RA) and CD57 expression on CD28- CD8+ T cells in healthy HIV-uninfected adults with and without CMV infection and in both untreated and antiretroviral therapy (ART)-suppressed HIV-infected adults with asymptomatic CMV infection. Results: Compared to HIV-uninfected adults without CMV (n = 12), those with asymptomatic CMV infection (n = 31) had a higher proportion of CD28-CD8+ T cells expressing CD57 (P = 0.005). Older age was also associated with greater proportions of CD28-CD8+ T cells expressing CD57 (rho: 0.47, P = 0.007). In contrast, untreated HIV-infected CMV+ participants (n = 55) had much lower proportions of CD28- CD8+ cells expressing CD57 than HIV-uninfected CMV+ participants (P,0.0001) and were enriched for less well-differentiated CD28- transitional memory (TTR) CD8+ T cells (P,0.0001). Chronically HIV-infected adults maintaining ART-mediated viral suppression (n = 96) had higher proportions of CD28-CD8+ T cells expressing CD57 than untreated patients (P,0.0001), but continued to have significantly lower levels than HIV-uninfected controls (P = 0.001). Among 45 HIV-infected individuals initiating their first ART regimen, the proportion of CD28-CD8+ T cells expressing CD57 declined (P,0.0001), which correlated with a decline in percent of transitional memory CD8+ T cells, and appeared to be largely explained by a decline in CD28-CD57- CD8+ T cell counts rather than an expansion of CD28-CD57+ CD8+ T cell counts. Conclusions: Unlike CMV and aging, which are associated with terminal differentiation and proliferation of effector memory CD8+ T cells, HIV inhibits this process, expanding less well-differentiated CD28- CD8+ T cells and decreasing the proportion of CD28- CD8+ T cells that express CD57

    Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum

    Get PDF
    Accuracy of aminoacylation is dependent on maintaining fidelity during attachment of amino acids to cognate tRNAs. Cis- and trans-editing protein factors impose quality control during protein translation, and 8 of 36 Plasmodium falciparum aminoacyl-tRNA synthetase (aaRS) assemblies contain canonical putative editing modules. Based on expression and localization profiles of these 8 aaRSs, we propose an asymmetric distribution between the parasite cytoplasm and its apicoplast of putative editing-domain containing aaRSs. We also show that the single copy alanyl- and threonyl-tRNA synthetases are dually targeted to parasite cytoplasm and apicoplast. This bipolar presence of two unique synthetases presents opportunity for inhibitor targeting their aminoacylation and editing activities in twin parasite compartments. We used this approach to identify specific inhibitors against the alanyl- and threonyl-tRNA synthetases. Further development of such inhibitors may lead to anti-parasitics which simultaneously block protein translation in two key parasite organelles, a strategy of wider applicability for pathogen control

    Class-modeling analysis reveals T-cell homeostasis disturbances involved in loss of immune control in elite controllers

    Get PDF
    Despite long-lasting HIV replication control, a significant proportion of elite controller (EC) patients may experience CD4 T-cell loss. Discovering perturbations in immunological parameters could help our understanding of the mechanisms that may be operating in those patients experiencing loss of immunological control. Methods A caseā€“control study was performed to evaluate if alterations in different T-cell homeostatic parameters can predict CD4 T-cell loss in ECs by comparing data from EC patients showing significant CD4 decline (cases) and EC patients showing stable CD4 counts (controls). The partial least-squaresā€“class modeling (PLS-CM) statistical methodology was employed to discriminate between the two groups of patients, and as a predictive model. Results Herein, we show that among T-cell homeostatic alterations, lower levels of naĆÆve and recent thymic emigrant subsets of CD8 cells and higher levels of effector and senescent subsets of CD8 cells as well as higher levels of exhaustion of CD4 cells, measured prior to CD4 T-cell loss, predict the loss of immunological control. Conclusions These data indicate that the parameters of T-cell homeostasis may identify those EC patients with a higher proclivity to CD4 T-cell loss. Our results may open new avenues for understanding the mechanisms underlying immunological progression despite HIV replication control, and eventually, for finding a functional cure through immune-based clinical trials.projects RD12/0017/0031, RD16/0025/ 0013, and SAF2015-66193-R as part of the Health Research and Development Strategy, State Plan for Scientific and Technical Research and Innovation (2008ā€“ 2011 and 2013ā€“2016) and cofinanced by the Institute of Health Carlos III (ISCIII), Sub-Directorate General for Research Assessment and Promotion and European Regional Development Fund. NR is a Miguel Servet investigator from the ISCIII (CP14/00198), Madrid, Spain. C Restrepo was funded by project RD12/0017/ 0031 and is currently funded by project RD16/0025/0013. M GarcĆ­a is a predoctoral student co-funded by grant CP14/00198 and an Intramural Research Scholarship from Instituto de InvestigaciĆ³n Sanitaria-FundaciĆ³n JimĆ©nez DĆ­az (IIS-FJD)

    PCR-Based Method Using Propidium Monoazide To Distinguish Viable from Nonviable Bacillus subtilis Sporesā–æ

    No full text
    This paper describes a molecular-based method which is able to discriminate between viable and inactivated Bacillus subtilis spores by utilizing the DNA-intercalating dye propidium monoazide. The approach should be valuable in our attempt to employ molecular methods to streamline the evaluation of process validation using bacterial endospores
    • ā€¦
    corecore